Skip to main content

Quantitative DNA Footprinting

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 90))

Abstract

Footprinting analysis has been used to identify the binding sites of drugs and other ligands bound to DNA molecules (see Chapter 1) (13). It is particularly useful for equilibrium binding drugs or ligands that leave no record of their residence position on DNA In the footprinting procedure, the ligand-DNA complex is exposed to an agent or probe that can cleave DNA, and the oligonucleotide products from the cleavage reaction are separated using, for example, electrophoresis in a polyacrylamide gel. If the ligand, when bound, inhibits cleavage by the probe, the oligonucleotides that terminate at the ligand binding site will be underrepresented among the products analyzed using the sequencing gel. This appears as omissions or “footprints” in the spots on the sequencing autoradiogram

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dabrowiak J. C., Stankus A. A., and Goodisman J. (1992) Sequence specificity of drug-DNA interactions in “Nucleic acid targeted drug design” (Propst C. L. and Perun T. J., eds.), Marcel Dekker New York, pp 93–149.

    Google Scholar 

  2. Shubsda M., Kishlkawa H., Goodisman J., and Dabrowtak J. C. (1994) Quantitative footprinting analysis J Mol Recogn 7, 133–139

    Article  CAS  Google Scholar 

  3. Dabrowiak J. C. and Goodisman J. (1989) Quantitative footprinting analysis of drug-DNA interactions in Chemistry and Physzcs of DNA-Ligand Interactions (Kallenbach N. P., ed), Adenine Guilderland, NY, pp 143–174

    Google Scholar 

  4. Rehfuss R., Goodisman J., and Dabrowlak J. C. (1990) Quantitative footprinting analysis of the actinomycin D-DNA interaction, inMolecular Basis of Specificity in Nucleic Acid-Drug Interactions (Pullman B and Jortner J., eds.), Kluwer Academic Netherlands, pp 157–166

    Chapter  Google Scholar 

  5. Ward B., Rehfuss R., Goodisman J., and Dabrowiak J. C. (1988) Rate enhancements in the DNase I footprinting experiment. Nucleic Acids Res 16,1359–1369

    Article  CAS  Google Scholar 

  6. Goodisman J., Rehfuss R., Ward B., and Dabrowiak J. C. (1992) Site specific binding constants for actinomycin D on DNA determined from footprinting studies Biochemistry 31, 1046–1058

    Article  CAS  Google Scholar 

  7. Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning, A Laboratory Manual, 2nd ed, Cold Spring Harbor Laboratory Cold Spring Harbor, NY

    Google Scholar 

  8. Ward B. and Dabrowiak J. C. (1988) Stability of DNase I in footprinting expenments Nucleic Acids Res 16,8724

    Article  CAS  Google Scholar 

  9. Gale E. F., Cundliffe E., Reynolds P. E., Richmond M. H., and Waring M. J. (1981) The molecular basis of antibiotic action Wiley, London

    Google Scholar 

  10. Suck D., Lahm A., and Oefner C. (1988) Structure refined to 2Å of a nicked DNA octanucleotide complex with DNase I Nature 332, 465–468.

    Article  Google Scholar 

  11. Goodisman J. and Dabrowiak J. C. (1992) Structural changes and enhancements in DNase I footprinting experiments. Biochemistry 31, 1058–1064.

    Article  CAS  Google Scholar 

  12. Chen F-M. (1992) Binding specificities of actinomycin D to non-self-complementary XGCY-tetranucleotide sequences. Biochemistry 31, 6223–6228

    Article  CAS  Google Scholar 

  13. Winkle S. A. and Krugh T. R. (1981) Equilibrium binding of carcinogen and antitumor antiblotics to DNA site selectivity, cooperativity, allosterism Nucleic Acids Res. 9,375–3186.

    Article  Google Scholar 

  14. Snyder J. G., Hartman N. G., D’eEstantoit B. L., Kennard O., Remeta D. P., and Bresiauer K. J. (1989), Binding of actinomycin D to DNA evidence for a non-classical high-affinity binding mode that does not require GpC sites Proc Natl Acad. Sci USA 86, 3968–3972

    Article  CAS  Google Scholar 

  15. Kamitori S. and Takusagawa F. (1992) Crystal structure of the 2.1 complex between d(GAAGCTTC) and the anticancer drug actmomycin D J Mol Biol 225, 445–456.

    Article  CAS  Google Scholar 

  16. Ward B. (1996) Type IIS restriction enzyme footprinting I. Measurement of a triple helix dissociation constant with Eco571 at 25°C Nucleic Acids Res 24,2435–2440

    Article  CAS  Google Scholar 

  17. Best G. C. and Dervan P. B. (1995) Energetics of formation of sixteen triple helical complexes which vary at a single position within a pyrimidine motif J Am Chem Soc 117,1187–1193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc., Totowa NJ

About this protocol

Cite this protocol

Dabrowiak, J.C., Goodisman, J., Ward, B. (1997). Quantitative DNA Footprinting. In: Fox, K.R. (eds) Drug-DNA Interaction Protocols. Methods in Molecular Biology™, vol 90. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-447-X:23

Download citation

  • DOI: https://doi.org/10.1385/0-89603-447-X:23

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-447-1

  • Online ISBN: 978-1-59259-574-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics