Skip to main content

Transcriptional Footprinting of Drug–DNA Interactions

  • Protocol
Drug-DNA Interaction Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 90))

  • 910 Accesses

Abstract

There are now approx 50 registered anticancer drugs that are in routine clinical use as chemotherapeutic agents (13). Of these, over half are known to interact with DNA, either by intercalation (e.g., doxorubicin, mitoxantrone), groove binding (e.g., distamycin), formation of adducts or crosslinks (e.g., melphalan, cisplatin, mitomycin C), or by incorporation of modified bases (e.g., 5-fluorouracil, 6-thioguanine). There has therefore been a great effort over many years to establish where on the DNA these drugs interact, with the expectation that a good understanding of the nature of the DNA receptor site would lead to the design of a new generation of these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schacter L. P., Anderson S., Canetta R. M., Kelley S., Nicaise C., Onetto N., Rozencweig M., Smaldone L., and Winograd B. (1992) Drug discovery and development in the pharmaceutical industry. Semin Oncol 19, 613–621

    CAS  Google Scholar 

  2. Loxman N. R. and Narayanan V. L. (1988) Chemical Structures of lnterest to the Division of Cancer Treatment, Drug Synthesis and Chemistry Branch, Developmental Therapeutics Program, National Cancer Institute, Bethesda, vol. VI

    Google Scholar 

  3. Chabner B. A. (1993) Cancer drug discoveries and development, in Cancer Principles and Practice of Oncology, 4th ed (Devita V. T., Hellman S, Rosenberg S A., and eds ), Lippincott Philadelphia, PA, pp. 325–417.

    Google Scholar 

  4. Waring M. J. and Fox K. R. (1983) Molecular aspects of the interaction between quinoxaline antibiotics and nucleic acids, in Molecular Aspects of Anticancer Drug Action (Neidle S and Waring M J., eds ), Macmillan London, pp 127–156

    Chapter  Google Scholar 

  5. Wakelin L. P. G. and Denny W. A. (1990) Kinetics and equilibrium binding studies of a series of intercalating agents that bind by threading a sidechain through the DNA helix, in Molecular Basis of Specificity in Nucleic Aced-Drug Interactions (Pullman B. and Jortner J., eds.), Kluwer Academic, Dordrecht, pp 19l–206.

    Google Scholar 

  6. Chaires J. B. (1992) Application of equilibrium binding methods to elucidate the sequence specificity of antibiotic binding to DNA, in Advances in DNA Sequence Specific Agents, vol 1 (Hurley L H, ed.), JAI, CT, pp 3–23

    Google Scholar 

  7. Dougherty G. and Pigram W. J. (1982) Spectroscopic analysis of drug-nucleic acid interactions CRC Critical Rev Biochem 12,103–132

    Article  CAS  Google Scholar 

  8. Chaires J. B. (1990) Daunomycin binding to DNA: from the macroscopic to the microscopic, in Molecular Basts of Specificity in Nucleic Acid—Drug Interaction (Pullman B and Jortner J, eds), Kluwer Academic, Dordrecht, pp 123–136

    Chapter  Google Scholar 

  9. Dabrowiak J. C. and Goodisman J. (1989) Quantitative footprinting analysis of drug-DNA interactions, in Chemistry and Physics of DNA-Ligand Interactions (Kallenbach N. R, ed ), Adenine, NY, pp 143–174.

    Google Scholar 

  10. Nielsen P. E. (1990) Chemical and photochemical probing of DNA complexes J Molec. Recognition 3, 1–25

    Article  CAS  Google Scholar 

  11. Leupin W. (1990) Experimental proofs of a drug’es DNA specificity, in Molecular Basis of Specificity in Nucleic Acid-Drug Interactions (Pullman B and Jortner J., eds.), Kluwer Academic, Dordrecht, Holland, pp 579–603

    Chapter  Google Scholar 

  12. Goodisman J. and Dabrowiak J. C. (1992) Quantitative aspects of DNaseI footprinting, in Advances in DNA Sequence Specific Agents, vol 1 (Hurley L H., ed.), JAI, CT, pp 1–37

    Google Scholar 

  13. Mymryk J. S. and Archer T. K. (1994) Detection of transcription factor binding in vivo using lambda exonuclease Nucleic Acids Res 22, 4344–4345

    Article  CAS  Google Scholar 

  14. Cullinane C. and Phillips D. R.( 1994) The sequence specificity of cyanomorpholinoadriamycin in human cells. Biochemistry 33, 6207–6212

    Article  CAS  Google Scholar 

  15. Murray V., Motyka H., England P. R., Wickham G., Lee H. O., Denny W. A., and McFadyen W. D. (1992) The use of Taq DNA polymerase to determine the sequence specificity of DNA damage caused by Cis-diamminedichloroplatinum (II), acridine-tethered platinum (II) diammine complexes or two analogues J Biol Chem 267, 18,805–18,809.

    CAS  Google Scholar 

  16. Murray V., Motyka H., England P. R., Wickham G., Lee H. O., Denny W. A., and McFadyen W. D. (1992) An investigation of the sequence specific interaction of Crs-diamminedichloroplatinum (II) and four analogues (including two acridine-tethered complexes) with DNA inside human cells. Biochemistry 31, 11,812–11,817

    Article  CAS  Google Scholar 

  17. White R. J. and Phillips D. R. (1988) Transcriptional analysis of multi-site drug-DNA dissociation kinetics. Delayed termination of transcription by actinomycin D Biochemistry 27, 9122–9132

    Article  CAS  Google Scholar 

  18. Phillips D. R., White R. J., Trist H., Cullinane C., Dean D., and Crothers D. M. (1990) New insight into drug-DNA interactions at individual drug sites probed by RNA polymerase during active transcription of the DNA. Anti-Cancer Drug Design 5, 2l–29.

    Google Scholar 

  19. Phillips D. R., Cullinane C., Trust H., and White R. J. (1990) In vitro transcription analysis of the sequence specificity of reversible and irreversible complexes of Adriamycin with DNA, in Molecular Basis of Specificity in Nucleic Acid-Drug Interactions (Pullman B and Jortner J., eds ), Kluwer Academic, Dordrecht, Holland, pp. 137–155.

    Chapter  Google Scholar 

  20. Phillips D. R. and Crothers D. M. (1995) An in vitro transcription assay for probing drug-DNA interactions during active transcription of DNA, in Methods in Molecular Biology, vol 37 In Vitro Transcription and Translation Protocols (Tymms M J, ed ), Humana, Totowa, NJ, pp. 89–105.

    Chapter  Google Scholar 

  21. Phillips D. R. (1996) Transcription assay for probing the specificity of drug-DNA interactions in Advances in DNA Sequence Specific Agents, vol. 2 (Hurley L H and Chaires J B, eds), JAI, Connecticut, pp 101–134

    Chapter  Google Scholar 

  22. White R. J. and Phillips D. R. (1989) Bidirectional transcription footprinting of DNA binding ligands Biochemistry 28, 6259–6269

    Article  CAS  Google Scholar 

  23. Trist H. and Phillips D. R. (1989) In vitro transcription analysis of the role of flanking sequences on the DNA sequence specificity of Adriamycin Nucleic Acids Res 17, 3673–3688

    Article  CAS  Google Scholar 

  24. White R. J. and Phillips D. R. (1989) Sequence-dependent termination of bacteriophage T7 transcription in vitro by DNA binding drugs Biochemistry 28, 4277–4283

    Article  CAS  Google Scholar 

  25. Cullinane C. and Phillips D. R. (1990) Induction of stable transcriptional blockage sites by Adriamycin. GpC specificity of apparent Adriamycin-DNA adducts and dependence on iron (III) ions Biochemistry 29, 5638–5646.

    Article  CAS  Google Scholar 

  26. Straney D. C. and Crothers D. M. (1985) Intermediates in transcription initiation from the E coli lac UV5 promoter. Cell 43, 449–459

    Article  CAS  Google Scholar 

  27. Cullinane C. and Phillips D. R. (1992) In vitro transcription analysis of DNA adducts by cyanomorpholinoadriamycin Biochemistry 31, 9513–9519.

    Article  CAS  Google Scholar 

  28. Wu H. and Crothers D. M. (1984) The locus of sequence-directed and proteininduced DNA binding Nature 308, 509–513

    Article  CAS  Google Scholar 

  29. Silverstone A. E., Arditti R. R., and Magasnik B. (1970)Catabolite-insensitive revertants of lac promoter mutants Proc Natl Acad Sci USA 66, 773–779

    Article  CAS  Google Scholar 

  30. Schaeffer F., Kolb A., and Buc H. (1982) Point mutations change the thermal denaturation profile of a short DNA fragment containing the lactose control elements Comparison between experiment and theory EMBO J 1, 99–105

    CAS  Google Scholar 

  31. Cullinane C. (1993) Detection and Characterisation of Adriamycin-DNA Adducts, PhD Thesis, La Trobe University, Bundoora, Vie, Australia

    Google Scholar 

  32. Stefano J. E. and Gralla J. (1979) Lac UV5 transcription in vitro. Rate limitation subsequent to formation of an RNA polymerase-DNA complex Biochemistry 18, 1063–1067

    Article  CAS  Google Scholar 

  33. Melton D. A., Kreig P. A., Rebagliati M. R., Maniatis T., Zinn K., and Green M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridisation probes from plasmids containing a bacteriophage SP6 promoter Nucleic Acids Res 12, 7035-1056

    Google Scholar 

  34. Caprousis A. J., Stefano J. E., and Gralla J. D. (1982) 5′-Nucleotide heterogeneity and altered initiation of transcription at mutant lac promoters. J Mol. Biol 157, 619–633

    Article  Google Scholar 

  35. Phillips D. R., Moate P. J., and Boston R. C. (1994) A modelling procedure for the analysis of dynamic drug-DNA interactions probed during active transcription of the DNA Anti-Cancer Drug Design 9, 209–219.

    CAS  Google Scholar 

  36. Dabrowiak J. C., Skorobogaty A., Rich N., Vary C. P. H., and Vournakis J. N. (1986) Computer assisted microdensitometric analysis of footprinting autoradiographic data. Nucleic Aczds Res 14, 489–499.

    Article  CAS  Google Scholar 

  37. Johnston R. F., Pickett S. C., and Barker D. L. (1990) Autoradiography using storage phosphor technology Electrophoresis 11, 355–360.

    Article  CAS  Google Scholar 

  38. Phillips D. R., White R. J., Dean D., and Crothers D. M. (1990) Monte-Carlo simulation of multisite echinomycin-DNA interactions detected by in vitro transcription analysis Biochemistry 29, 4812–4819

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Phillips, D.R., Cullinane, C. (1997). Transcriptional Footprinting of Drug–DNA Interactions. In: Fox, K.R. (eds) Drug-DNA Interaction Protocols. Methods in Molecular Biology™, vol 90. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-447-X:127

Download citation

  • DOI: https://doi.org/10.1385/0-89603-447-X:127

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-447-1

  • Online ISBN: 978-1-59259-574-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics