DNase I Footprinting

  • Keith R. Fox
Part of the Methods in Molecular Biology™ book series (MIMB, volume 90)


Footprinting provides a simple, quick, and reasonably inexpensive method for assessing the sequence specific interaction of ligands with DNA. Although the technique was developed in 1978 for studying the interaction of DNA-binding proteins with then target sites (1), it has proved invaluable for determining the sequence specificity of many small ligands


Minor Groove Ligand Binding Site Phosphodiester Bond Minor Groove Binding Micrococcal Nuclease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Galas D. J. and Schmitz A. (1978) DNAase footprinting—simple method for detection of protein-DNA binding specificity Nucleic Acids Res 5, 3157–3170CrossRefGoogle Scholar
  2. 2.
    Lane M. J., Dabrowrak J. C., and Vournakis J. N. (1983) Sequence specificity of actinomycin D and netropsin binding to pBR322 analysed by protection from DNAase I. Proc Natl Acad Sci USA 80, 3260–3264CrossRefGoogle Scholar
  3. 3.
    Scamrov A. V. and Beabealashvilh R. Sh. (1983) Binding of actinomycin D to DNA revealed by DNAase I footprinting. FEBS Lett 164, 97–101.CrossRefGoogle Scholar
  4. 4.
    Fox K. R. and Waring M. J. (1984) DNA structural variations produced by actinomycin and distainycin as revealed by DNAase I footprinting Nucleic Acids Res 12, 9271–9285CrossRefGoogle Scholar
  5. 5.
    Fox K. R. and Howarth N. R. (1985) Investigations into the sequence-selective binding of mithramycin and related ligands to DNA Nucleic Acids Res 13, 8695–8714CrossRefGoogle Scholar
  6. 6.
    Low C. M. L., Drew H. R., and Waring M. J. (1984) Sequence-specific binding of echinomycin to DNA. evidence for conformational changes affecting flanking sequences. Nucleic Acids Res 12, 4865–4879CrossRefGoogle Scholar
  7. 7.
    Low C. M. L., Olsen R. K., and Waring M. J. (1984) Sequence preferences in the binding to DNA of triosim A and TANDEM as reported by DNase I footprinting. FEBS Lett 176, 414–419.CrossRefGoogle Scholar
  8. 8.
    Chaires J. B., Fox K. R., Herrera J. E., Britt M., and Waring M. J. (1987) Site and sequence specificity of the daunomycin-DNA interaction Biochemistry 26, 8227–8236CrossRefGoogle Scholar
  9. 9.
    Chanes J. B., Herrera J. E., and Waring M. J. (1990) Preferential binding of daunomycm to 5′(A/T)CG and 5′(A/T)GC sequences revealed by footprinting titration experiments Biochemistry 29, 6145–6153CrossRefGoogle Scholar
  10. 10.
    Fox K. R. and Waring M. J. (1986) Nucleotide sequence binding preferences of nogalamycin investigated by DNase I footprinting. Biochemistry 25, 4349–4356CrossRefGoogle Scholar
  11. 11.
    Abu-Daya A., Brown P. M., and Fox K. R. (1995) DNA sequence preferences of several AT-selective minor groove binding ligands Nucleic Acids Res 23, 3385–3392CrossRefGoogle Scholar
  12. 12.
    Cooney M., Czernuszewicz G., Pastel E. H., Flint S. J., and Hogan M. E. (1988) Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro Science 241, 456–459CrossRefGoogle Scholar
  13. 13.
    Cheng A-J. and van Dyke M. W. (1994) Oligodeoxyribonucleotide length and sequence effects on intermolecular purine-purme-pyrimidme triple-helix formation Nucleic Acids Res 22, 4742–4747CrossRefGoogle Scholar
  14. 14.
    Fox K. R. and Waring M. J. (1987) The use of micrococcal nuclease as a probe for drug-binding sites on DNA Biochim Biophys Acta 909, 145–155CrossRefGoogle Scholar
  15. 15.
    Cons B. M. G. and Fox K. R. (1990) The GC-selective ligand mithramycm alters the structure of (AT), sequences flanking its binding sites FEBS Lett 264, 100–104CrossRefGoogle Scholar
  16. 16.
    Stgman D. S. (1990) Chemical nucleases. Biochemistry 29, 9097–9105CrossRefGoogle Scholar
  17. 17.
    Spassky A. and Sigamn D. S. (1985) Nuclease activity of 1,l0 phenanthrolmecopperion. conformational analysis and footprinting of the lac operon Biochemistry 24, 8050–8056.CrossRefGoogle Scholar
  18. 18.
    Van Dyke M. W., Hertzberg R. P., and Dervan P. B. (1982) Map of distamycin, netropsin and actinomycin binding sites on heterogeneous DNA DNA cleavage inhibition patterns with methidiumpropyl-EDTA-Fe(II). Proc Natl Acad Sci USA 79, 5470–5474CrossRefGoogle Scholar
  19. 19.
    Van Dyke M. W. and Dervan P. B. (1983) Chromomycin, mithramycm and ohvomycin binding sites on heterogeneous deoxyribonucleic acid Footprinting with (methidiumpropyl-EDTA)Iron(II) Biochemistry 22, 2373–2377CrossRefGoogle Scholar
  20. 20.
    Hertzberg J. P. and Dervan P. B. (1984) Cleavage of DNA with methidiumpropyl-EDTA-Iron(I1) reaction conditions and product analyses Biochemistry 23, 3934–3945CrossRefGoogle Scholar
  21. 21.
    Van Dyke M. W. and Dervan P. B. (1983) Methidiumpropyl-EDTA.Fe(II) and DNase I footprinting report different small molecule binding site sizes on DNA Nucleic Acids Res 10, 5555–5567CrossRefGoogle Scholar
  22. 22.
    Nielsen P. E., Jeppesen C., and Buchardt O. (1988) Uranyl salts as photochemical agents for cleavage of DNA and probing of protein DNA contacts FEBS Lett 235, 22–124.CrossRefGoogle Scholar
  23. 23.
    Nielsen P. E., Hiort C., Sonmchsen S. H., Buchardt O., Dahl O., and Norden B. (1993) DNA binding and photocleavage by uranyl(VI)(UO2 2+) salts J Am Chem Soc 114, 4967–4975CrossRefGoogle Scholar
  24. 24.
    Cons B. M. G. and Fox K. R. (1989) High Resolution hydroxyl radical footprinting of the binding of mithramycin and related antibiotics to DNA Nucleic Acids Res 17, 5447–5459CrossRefGoogle Scholar
  25. 25.
    Churchill M. E. A., Hayes J. J., and Tullms T. D. (1990) Detection of drug binding to DNA by hydroxyl radical footprinting Relationship of distainycin binding sites to DNA structure and positioned nucleosomes on 5s RNA genes of Xenopus Biochemistry 29, 6043–6050.CrossRefGoogle Scholar
  26. 26.
    Portugal J. and Waring M. J. (1987) Hydroxyl radical footprinting of the sequence-selective binding of netropsin and distamycin to DNA. FEBS Lett 225, 195–200CrossRefGoogle Scholar
  27. 27.
    Drew H. R. and Travers A. A. (1984) DNA structural variations in the E colityr T promoter. Cell 37, 491–502CrossRefGoogle Scholar
  28. 28.
    Drew H. R. (1984) Structural specificrues of five commonly used DNA nucleases J Mol Biol 176, 535–557CrossRefGoogle Scholar
  29. 29.
    Waterloh K. and Fox K. R. (1991) The effects of actinomycin on the structure of dAn dTn and (dA-dT)n regions surrounding its GC binding site: a footprinting study J Biol Chem. 266, 6381–6388.Google Scholar
  30. 30.
    Waterloh K. and Fox K. R. (1991) Interaction of echinomycin with An Tn and (AT)n regions flanking its CG bINding site Nucleic Acids Res 19, 6719–6724CrossRefGoogle Scholar
  31. 31.
    Laskowskr M. (1971) DeoxyrlbonucleaseI, in The Enzymes, vol. 4 (Boyer P D, ed), Academice London, pp 289–311.Google Scholar
  32. 32.
    Kunitz M. (1950) Crystallme deoxyribonuclease I isolation and general properties spectrophotometric method for the measurement of deoxyribonuclease activity. J Gen Physiol 33, 349–369CrossRefGoogle Scholar
  33. 33.
    Price P. A. (1975) The essential role of Ca2+ in the activity of bovine pancreatic deoxyribonuclease J Biol Chem 250, 1981–1986Google Scholar
  34. 34.
    Lomonossoff G. P., Butler P. J. G., and Klug A. (1981) Sequence-dependent variation in the conformation of DNA. J Mol Biol 149, 745–760.CrossRefGoogle Scholar
  35. 35.
    Hogan M. E., Roberson M. W., and Austin R. H. (1989) DNA flexibility variation may dominate DNase I cleavage Proc Natl Acad Sci USA 86, 9273–9277CrossRefGoogle Scholar
  36. 36.
    Brukner I., Jurukovski V., and Savic A. (1990) Sequence-dependent structural variations of DNA revealed by DNase I. Nucleic Acids Res 18, 89l–894CrossRefGoogle Scholar
  37. 37.
    Suck D., Oefner C., and Kabasch W. (1984) Three-dimensional structure of bovine pancreatic DNAase I at 2.5A resolution. EMBO J 3, 2423–2430.Google Scholar
  38. 38.
    Suck D. and Oefner C. (1986) Structure of DNaseI at 2Å resolution suggests a mechanism for binding to and cutting DNA Nature 321, 620–625.CrossRefGoogle Scholar
  39. 39.
    Oefner C. and Suck D. (1986) Crystallographic refinement and structure of DNAase 1 at 2A resolution. J Mol Biol. 192, 605–632.CrossRefGoogle Scholar
  40. 40.
    Suck D., Lahm A., and Oefner C. (1988) Structure refined to 2A of anicked octanulceotide complex with DNAase I Nature 332, 464–468CrossRefGoogle Scholar
  41. 41.
    Weston S. A., Lahm A., and Suck D. (1992) X-ray structure of the DNase I-d(GGTATACC)2 complex at 2 3k resolution. J Mol Biol 226, 1237–1256CrossRefGoogle Scholar
  42. 42.
    Lahm A. and Suck D. (1991) DNase I-induced DNA conformation. 2A structure of a DNase I-octamer complex J Mol Biol 221, 645–667CrossRefGoogle Scholar
  43. 43.
    Herrera J. E. and Chaires J. B. (1994) Characterization of preferred Deoxyribo-nuclease I cleavage sites J Mol Biol 236, 405–411CrossRefGoogle Scholar
  44. 44.
    Bailly C., Donker I. O., Gentle D., Thornalley M., and Waring M. J. (1994) Sequence selective binding to DNA of cis-and trans-butamidme analogues of the anti-Pneumocystis carmn pneumonia drug pentamidme. Mol Pharm 46, 313–322Google Scholar
  45. 45.
    Bailly C., Gentle D., Hamy F., Purcell M., and Waring M. J. (1994) Localized chemical reactivity in DNA associated with the sequence specific bisintercalation of echinomycin Biochem J 300, 165–173CrossRefGoogle Scholar
  46. 46.
    Ridge G. S., Bailly C., Graves D. E., and Waring M. J. (1994) Daunomycin modifies the sequence-selective recognition of DNA by actinomycin. Nucleic Acids Res. 22, 5241–5246.CrossRefGoogle Scholar
  47. 47.
    Waterloh K. and Fox K. R. (1992) Secondary (non-GpC) binding sites for actinomycin on DNA. Biochim Biophys Acta 1131, 300–306CrossRefGoogle Scholar
  48. 48.
    Fletcher M. C. and Fox K. R. (1993) Visualising the kinetics of dissociation of actinomycin from individual binding sites in mixed sequence DNA by DNase I footprinting Nucleic Acids Res 21, 1339–1344CrossRefGoogle Scholar
  49. 49.
    Fletcher M. C. and Fox K. R. (1996) Dissociation kinetics of echinomycin from CpG sites in different sequence environment Biochemistry 35, 1064–1075CrossRefGoogle Scholar
  50. 50.
    Huang Y.-Q., Rehfuss R. P., LaPlante S. R., Boudreau E Borer P. N., and Lane M. J. (1988) actinomycin D Induced DNAase I cleavage enhancement caused by sequence specific propagation of an altered DNA structure Nucleic Acids Res 16, 11,125–11,139CrossRefGoogle Scholar
  51. 51.
    Bishop K. D., Borer P. N., Huang Y.-Q., and Lane M. J. (1991) Actinomycin D induced DNase I hypersensitivity and asymmetric structure transmission in a DNA hexadecamer Nucleic Acids Res 19, 87l–875CrossRefGoogle Scholar
  52. 52.
    Maxam A. M. and Gilbert W. (1980) Sequencing end labelled DNA with base-specific chemical cleavages Methods Enzymol 65, 499–560CrossRefGoogle Scholar
  53. 53.
    Lavesa M., Olsen R. K., and Fox K. R. (1993) Sequence spectfic binding of [N-MeCys3,N-MeCys7] TANDEM to TpA. Biochem J 289, 605–607.CrossRefGoogle Scholar
  54. 54.
    Ward B. Rehfuss R., Goodisman J., and Dabrowtak J. C. (1988) Rate enhancements in the DNase I footprinting experiment Nucleic Acids Res 16, 1359–1369CrossRefGoogle Scholar
  55. 55.
    Ward B. Rehfuss R. Goodisman J., and Dabrowtak J. D. (1988) Determination of netropsin-DNA binding constants from footprinting data Biochemistry 27, 1198–1205CrossRefGoogle Scholar
  56. 56.
    Fox K. R. and Waring M. J. (1987) footprinting at low temperatures evidence that ethidium and other sample intercalators can discriminate between different nucleotide sequences Nucleic Acids Res 15, 49l–507CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa NJ 1997

Authors and Affiliations

  • Keith R. Fox
    • 1
  1. 1.Division of Biochemistry and Molecular BiologySchool of Biological Sciences, University of SouthamptonUK

Personalised recommendations