Skip to main content

An Introduction to PCR Primer Design and Optimization of Amplification Reactions

  • Protocol
Forensic DNA Profiling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 98))

Abstract

PCR optimization is usually performed in order to obtain maximum specificity and yield. In some applications for which the amount of template may be limiting, or when there is a large amount of nontarget sequences, the sensitivity is maximized. Nonoptimized conditions promote artifactual bands resulting from primer dimerization and mispriming, broad bands containing a mixture of correct and incomplete products, and, generally speaking, a poor signal-to-noise ratio. Poorly designed PCR protocols also lack robustness. Such situations can occur in which the PCR is challenged with less than pristine DNAs or when the ingredients of the reaction are not added in the exact amounts as described by the authors of the protocol. Thus, a well-optimized PCR should be reliable in the hands of a coworker or in the laboratory of another institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  2. Mullis, K. B. and Faloona, F. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Meth. Enzymol. 155, 335–350.

    Article  PubMed  CAS  Google Scholar 

  3. Gibbs, R. A. (1990) DNA amplification by the polymerase chain reaction. Anal. Chem. 62,1202–1214.

    Article  PubMed  CAS  Google Scholar 

  4. Bloch, W. (1991) A biochemical prospective of the polymerase chain reaction. Biochemistry 30, 2735–2747.

    Article  PubMed  CAS  Google Scholar 

  5. Arnheim, N. and Erlich, H. (1992) Polymerase chain reaction strategy. Ann. Rev. Biochem. 61, 131–156.

    Article  PubMed  CAS  Google Scholar 

  6. Mullis, K., Ferré, F., and Gibbs, R. (1994) The Polymerase Chain Reaction. Birkhäuser, Berlin, Germany.

    Google Scholar 

  7. Robertson, J. M., Sgueglia, J. B., Badger, C. A., Juston, A. C., and Ballantyne, J. (1995) Forensic applications of a rapid, sensitive, and precise multiplex analysis of the four short tandem repeat loci HumvWF31A/1, HumTHO1, HumF13A1, and HumFES/FPS. Electrophoresis 16, 1568–1576.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, L., Xiangfeng, C., Schmitt, K., Hubert, R., Naridi, W., and Arnheim, N. (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl. Acad. Sci. USA 89, 5847–5851.

    Article  PubMed  CAS  Google Scholar 

  9. Garner, H. R., Armstrong, B., and Lininger, D. M. (1993) High-throughput PCR.Biotechniques 14, 112–115.

    PubMed  CAS  Google Scholar 

  10. Wittwer, C. T. and Garling, D. J. (1991) Rapid cycle DNA amplification: time and temperature optimization. Biotechniques 10, 76–83.

    PubMed  CAS  Google Scholar 

  11. Ohler, L. and Rose, E. A. (1992) Optimization of long distance PCR using a transposon-based model system. PCR Meth. Applicat. 2, 51–59.

    CAS  Google Scholar 

  12. Budowle, B., Chakraborty, R., Giusti, A. M., Eisenberg, A. J., and Allen, R. C. (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am. J. Hum. Genet. 48, 137–144.

    PubMed  CAS  Google Scholar 

  13. Davies, J. L., Kawaguchi, Y., Bennett, S. T., Copeman, J. B., Cordell, H. J., Pritchard, L. E., Reed, P. W., Gough, S. C. L., Jenkins, S. C., Palmer, S. M., Balfour, K. M., Rowe, B. R., Farrall, M., Barnett, A. H., Bain, S. C., and Todd, J. A. (1994) A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371, 130–136.

    Article  PubMed  CAS  Google Scholar 

  14. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  15. Welsh, J. and McClelland, M. (1991) Genomic fingerprints produced by PCR with consensus tRNA gene primers. Nucleic Acids Res. 19, 861–866.

    Article  PubMed  CAS  Google Scholar 

  16. Caetano-Anolles, G., Bassam, B. J., and Gresshoff, P. M. (1991) DNA amplification fingerprinting using short arbitrary oligonucleotide primers. Biotechniques 9,553–557.

    Article  CAS  Google Scholar 

  17. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabean, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23,4407–4414.

    Article  PubMed  CAS  Google Scholar 

  18. Young, N. D., Zamir, D., Ganal, M. W., and Tanksley, S. D. (1988) Use of isogenic lines abd simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120, 579–585.

    PubMed  CAS  Google Scholar 

  19. Paran, I. and Michelmore, R. W. (1993) Development of reliable PCR-based markers linked to downey mildew resistance genes in lettuce. Theoret. Appl. Genet. 85, 985–990.

    Article  CAS  Google Scholar 

  20. Michelmore, R. W., Paran, I., and Kesseli, R. V. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88, 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  21. Sakuma, Y. and Nishigaki, K. (1994) Computer prediction of general PCR products based on dynamical solution structures of DNA. J. Biochem. (Tokyo) 116,736–741.

    CAS  Google Scholar 

  22. He, Q., Marjamäki, M., Soini, H., Mertsola, J., and Viljanen, M. K. (1994) Primers are decisive for sensitivity of PCR. Biotechniques 17, 82–87.

    PubMed  CAS  Google Scholar 

  23. Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K., and Mattick, J. S. (1991) Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19,4008.

    Article  PubMed  CAS  Google Scholar 

  24. Rychlik, W. and Rhodes, R. E. (1989) A computer program for choosing of oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 17, 8543–8551.

    Article  PubMed  CAS  Google Scholar 

  25. Breslauer, K. J., Frank, R., Blocker, H., and Marky, L. A. (1986) Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750.

    Article  PubMed  CAS  Google Scholar 

  26. Wu, D. Y., Ugozzoli, L., Pal, B. K., Qian, J., and Wallace, R. B. (1991) The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell. Biol. 10, 233–238.

    Article  PubMed  CAS  Google Scholar 

  27. Schildkraut, C. and Lifson, S. (1965) Dependence of the melting temperature of DNA on salt concentrations. Biopolymers 3, 195–208.

    Article  PubMed  CAS  Google Scholar 

  28. Baldino, F., Jr., Chesselet, M.-F., and Lewis, M. E. (1989) High-resolution in situ hybridization histochemistry. Meth. Enzymol. 168, 761–777.

    Article  PubMed  CAS  Google Scholar 

  29. Suggs, S. V., Hirose, T., Miyake, E. H., Kawashima, M. J., Johnson, K. I., and Wallace, R. B. (1981) Using purified genes, in ICN-UCLA Symposium on Developmental Biology, vol. 23 (Brown, D. D., ed.), Academic, New York, pp. 683–693.

    Google Scholar 

  30. Frégeau, C. J. and Fourney, R. M. (1993) DNA typing with fluorescently tagged short tandem repeats: a sensitive and accurate approach to human identification. Biotechniques 15, 100–119.

    PubMed  Google Scholar 

  31. Sharma, V. and Litt, M. (1992) Tetranucleotide repeat polymorphism at the d21S11 locus. Hum. Mol. Genet. 1, 67.

    Article  PubMed  CAS  Google Scholar 

  32. Frégeau, C. J., Bowen, K. L., Elliott, J. C., Robertson, J. M., and Fourney, R. M. (1994) PCR-based DNA identification: a transition in forensic science, in Proc. Fourth Int. Symp. Hum. Ident., Promega Corp., Madison, WI, pp. 107–118.

    Google Scholar 

  33. McClelland, M. and Welsh, J. (1994) DNA fingerprinting by arbitrarily primed PCR. PCR Meth. Applicat. 4, S59–S65.

    CAS  Google Scholar 

  34. Green, A. P., Burzynski, J., Helveston, N. M., Prior, G. M., Wunner, W. H., and Thompson, J. A. (1995) HPLC purification of synthetic oligodeoxyribonucleotides containing base-and backbone modified sequences. Biotechniques 19, 836–841.

    PubMed  CAS  Google Scholar 

  35. Wahl, G. M., Berger, S. L., and Kimmel, A. R. (1987) Synthesis and characterization of oligonucleotides. Meth. Enzymol. 152, 399–407.

    Article  PubMed  CAS  Google Scholar 

  36. Clark, J. M. (1988) Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 16, 9877–9686.

    Article  Google Scholar 

  37. Hu, G. (1993) DNA polymerase-catalyzed addition of non-templated extra nucleotides to the 3′ end of a DNA fragment. DNA Cell Biol. 12, 763–770.

    Article  PubMed  CAS  Google Scholar 

  38. Rychlik, W. (1995) Priming efficiency in PCR. Biotechniques 18, 84–89.

    PubMed  CAS  Google Scholar 

  39. Gelfand, D. H., personal communication.

    Google Scholar 

  40. Hauge, X. Y. and Litt, M. (1993) A study of the origin of “shadow bands” seen when typing dinucleotide repeat polymorphisms by the PCR. Hum. Mol. Genet. 2, 411–415.

    Article  PubMed  CAS  Google Scholar 

  41. Levinson, G. and Gutman, G. A. (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4, 203–221.

    PubMed  CAS  Google Scholar 

  42. Liedtke, W., Opalka, B., Zimmermann, C. W., and Schmid, E. (1994) Different methods of sample preparation influence sensitivity of Mycobacterium tuberculosis and Borrelia burgdorferi PCR. PCR Meth. Applicat. 3, 301–304.

    CAS  Google Scholar 

  43. Wilde, J., Eiden, J., and Yolken, R. (1990) Removal of inhibitory substances from human fecal specimens for detection of group A Rotaviruses by reverse transcriptase and polymerase chain reactions. J. Clin. Microbiol. 28, 1300–1307.

    PubMed  CAS  Google Scholar 

  44. Yamaguchi, Y., Hironaka, T., Kajiwara, M., Tateno, E., Kita, H., and Hirai, K. (1992) Increased sensitivity for detection of human cytomegalovirus in urine by removal of inhibitors for the polymerase chain reaction. J. Virol. Meth. 37, 209–218.

    Article  CAS  Google Scholar 

  45. Tsai, Y.-L., Sobsey, M. D., Sangermano, L. R., and Palmer, C. J. (1993) Simple method of concentrating enteroviruses and hepatitis A virus from sewage and ocean water for rapid detection by reverse transcriptase-polymerase chain reaction. Appl. Environ. Microbiol. 59, 3488–3491.

    PubMed  CAS  Google Scholar 

  46. Budowle, B. and Baechtel, S. (1990) Modifications to improve the effectiveness of restriction fragment length polymorphism typing. Anal. Biochem. 92, 497–500.

    Google Scholar 

  47. Walsh, P. S., Metzger, D. A., and Higuchi, R. (1991) Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513.

    PubMed  CAS  Google Scholar 

  48. Walsh, P. S., Varlaro, J., and Reynolds, R. (1992) A rapid chemiluminescent method for quantitation of human DNA. Nucleic Acids Res. 20, 5061–5065.

    Article  PubMed  CAS  Google Scholar 

  49. Budowle, B., Baechtel, F. S., Comey, C. T., Giusti, A. M., and Klevan, L. (1995) Simple protocols for typing forensic biological evidence: chemiluminescent detection for human DNA quantitation and restriction fragment length polymorphism (RFLP) analyses and manual typing of polymerase chain reaction (PCR) amplified polymorphisms. Electrophoresis 16, 1559–1567.

    Article  PubMed  CAS  Google Scholar 

  50. Fang, G., Hammar, S., and Grumet, R. (1992) A quick and inexpensive method for removing plant polysaccharides from plant genomic DNA. Biotechniques 13, 52–54.

    PubMed  CAS  Google Scholar 

  51. Kilby, N. J. and Furner, I. J. (1990) Another CTAB plant DNA extraction: isolation of high molecular weight DNA from small quantities of Arabidopsis tissue. http://weeds. mgh. harvard. edu menu item: Compleat Guide.

  52. Reed, P. W., Davies, J. L., Copeman, J. B., Bennet, S. T., Palmer, S. M., Pritchard, L. E., Gough, S. C. L., Kawagucchi, Y., Cordell, H. J., Balfour, K. M., Jenkins, S. C., Powell, E. E., Vignal, A., and Todd, J. A. (1994) Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nature Genet. 7, 390–395.

    Article  PubMed  CAS  Google Scholar 

  53. Gelfand, D. H. (1989) Taq DNA polymerase, in PCR Technology: Principles and Applications for DNA Amplification (Erlich, H. A., ed.), Stockton Press, New York, 17–22.

    Google Scholar 

  54. Mullis, K. B. (1991) The polymerase chain reaction in an anemic mode: how to avoid cold oligodeoxyribonuclear fusion. PCR Meth. Applicat. 1, 1–14.

    CAS  Google Scholar 

  55. Chou, Q., Russell, M., Birch, D. E., Raymond, J., and Bloch, W. (1992) Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 20, 1717–1723.

    Article  PubMed  CAS  Google Scholar 

  56. Blanchard M. M., Taillon-Miller, P., Nowotny, P., and Nowotny, V. (1993) PCR buffer optimization with uniform temperature regimen to facilitate automation. PCR Meth. Applicat. 2, 234–240.

    CAS  Google Scholar 

  57. Chamberlin, J. S., Gibbs, R. A., Ranier, J., and Caskey, C. T. (1989) Multiplex PCR for the diagnosis of Duchenne muscular dystrophy, in PCR Protocols: A Guide to Methods and Applications (Innis, M., Gelfand, D., Sninsky, D., and White, I., eds.), pp. 272–281.

    Google Scholar 

  58. Schweder, M. E., Shatters, G., Jr., West, S. H., and Smith, R. L. (1995) Effect of transition interval between melting and annealing temperatures on RAPD analyses. Biotechniques 19, 38–42.

    PubMed  CAS  Google Scholar 

  59. Cusi, M. G., Cioé, L., and Rovera, G. (1992) PCR amplification of GC-rich templates containing palindromic sequences using initial alkali denaturation. Biotechniques 12, 502–504.

    PubMed  CAS  Google Scholar 

  60. Jeffreys, A. J., MacLeod, A., Tamaki, K., Neil, D. L., and Monckton, D. G. (1991) Minisatellite repeat coding as a digital approach to DNA typing. Nature 354,204–209.

    Article  PubMed  CAS  Google Scholar 

  61. Lowe, T. Shareifkin, J., Yang, S. Q., and Dieffenbach, C. W. (1990) A computer program for selection of oligonucleotide primers for the polymerase chain reaction. Nucleic Acids Res. 18,1757–1761.

    Article  CAS  Google Scholar 

  62. Welsh, J., Petersen, C., and McClelland, M. (1991) Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Res. 19, 303–306.

    Article  PubMed  CAS  Google Scholar 

  63. Versalovic, J., Thearith, K., and Lupski, J. R. (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19, 6823–6831.

    Article  PubMed  CAS  Google Scholar 

  64. Caetano-Anolles, G. and Gresshoff, P. M. (1994) DNA amplification fingerprinting using arbitrary mini-hairpin oligonucleotide primers. Biotechniques 12,619–624.

    Article  CAS  Google Scholar 

  65. Cassol, S., Rudnik, J., Salas, T., Montpetit, M., Pon, R. T., Sy, C. T., Read, S., Major, C., and O’Shaughnessy, M. V. (1992) Rapid DNA fingerprinting to control for specimen errors in HIV testing by the polymerase chain reaction. Mol. Cell. Probes 6,327–331.

    Article  PubMed  CAS  Google Scholar 

  66. Batzer, M. A., Carlton, J. E., and Deininger, P. L. (1991) Enhanced evolutionary PCR using oligonucleotides with inosine at the 3′-terminus. Nucleic Acids Res. 19, 5081.

    Article  PubMed  CAS  Google Scholar 

  67. Bartl, S. and Weissman, I. L. (1994) PCR primers containing an inosine triplet to complement a variable codon within a conserved protein-coding region. Biotechniques 16, 246–250.

    PubMed  CAS  Google Scholar 

  68. Wang, K., Koop, B. F., and Hood, L. (1994) A simple method using T4 DNA polymerase to clone polymerase chain reaction products. Biotechniques 17 236–239.

    PubMed  CAS  Google Scholar 

  69. Costa, G. L. and Weiner, M. P. (1994) Protocols for cloning and analysis of bluntended PCR-generated DNA fragments. PCR Meth. Applicat. 3, S95–S106.

    CAS  Google Scholar 

  70. AmpFISTR™ Blue User’s Manual, Perkin-Elmer Applied Biosystems, Foster City, CA, pp. 9–12.

    Google Scholar 

  71. Schuchard, M., Sarkar, G., Ruesink, T., and Spelsberg, T. C. (1993) Two-step “hot” PCR amplification of GC-rich Avian c-myc sequences. Biotechniques 14,390–394.

    PubMed  CAS  Google Scholar 

  72. McConlogue, L., Brow, M. D., and Innis, M. A. (1988) Structure-independent DNA amplification by PCR using 7-deaza-2′-deoxy-guanosine. Nucleic Acids Res. 16, 9869.

    Article  PubMed  CAS  Google Scholar 

  73. Ritchie, R. J., Knight, S. J. L., Hirst, M. C., Grewal, P. K., Bobrow, M., Cross, G. S., and Davies, K. E. (1994) The cloning of FRAXF: trinucleotide repeat expansion and methylation at a third fragile site in distal Xqter. Hum. Mol. Genet. 3,2115–2121.

    Article  PubMed  CAS  Google Scholar 

  74. Turner, S. L. and Jenkins, F. J. (1995) Use of deoxyinosine in PCR to improve amplification of GC-rich DNA. Biotechniques 19,47–52.

    Google Scholar 

  75. Latimer, L. J. P. and Lee, J. S. (1991) Ethidium bromide does not fluoresce when intercalated adjacent to 7-deazaguanine in duplex DNA. J. Biol. Chem. 266, 13,849–13,851.

    PubMed  CAS  Google Scholar 

  76. Sarkar, G., Kapelner, S., and Sommer, S. S. (1990) Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res. 18, 7465.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Robertson, J.M., Walsh-Weller, J. (1998). An Introduction to PCR Primer Design and Optimization of Amplification Reactions. In: Lincoln, P.J., Thomson, J. (eds) Forensic DNA Profiling Protocols. Methods in Molecular Biology, vol 98. Humana Press. https://doi.org/10.1385/0-89603-443-7:121

Download citation

  • DOI: https://doi.org/10.1385/0-89603-443-7:121

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-443-3

  • Online ISBN: 978-1-59259-204-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics