Recovery of DNA for PCR Amplification from Blood and Forensic Samples Using a Chelating Resin

  • Jeanne M. Willard
  • Dennis A. Lee
  • Mitchell M. Holland
Part of the Methods in Molecular Biology book series (MIMB, volume 98)

Abstract

A wide range of biological samples are encountered in the field of forensic science, including blood, soft tissue, semen, urine, saliva, teeth, and bone. Forensic samples are routinely found as stains on various substrates, including cotton, denim, carpet, wallboard, wood, envelopes, and cigaret butts. Prior to collection, these samples have often been exposed to severe environmental conditions, such as varying degrees of temperature and humidity, microbial and chemical contaminants, and exposure to soils and other natural substances, such as salt water.

Keywords

Vortex Magnesium Albumin EDTA Bromide 

References

  1. 1.
    Koblinsky, L. (1992) Recovery and stability of DNA in samples of forensic science significance. Forensic Sci. Rev. 4, 68–87.Google Scholar
  2. 2.
    Budowle, B. and Baechtal, F. S. (1990) Modification to improve the effectiveness of restriction fragment polymorphism typing. Appl. Theoretical Electrophoresis 181–187.Google Scholar
  3. 3.
    Budowle, B., Waye, J. S., Shutler, G. G., and Baechtal, F. S. (1990) Hae III-A suitable restriction endonuclease for restriction fragment length polymorphism analysis of biological evidence samples. J. Forensic Sci. 35, 530–536.PubMedGoogle Scholar
  4. 4.
    Higuchi, R. (1989) Simple and rapid preparation of samples for PCR, in PCR Technology: Principles and Applications for DNA Amplification (Erlich, H. E., ed.) Stockton, New York, pp. 31–38.Google Scholar
  5. 5.
    Comey, C. T. and Budowle, B. (1991) Validation studies on the HLA-DQα locus using the polymerase chain reaction. J. Forensic Sci. 36, 1633–1648.PubMedGoogle Scholar
  6. 6.
    Dykes, D. (1988) The use of biotinylated DNA probes in parentage testing: non-isotopic labeling and non-toxic extraction. Electrophoresis 9, 359–368.PubMedCrossRefGoogle Scholar
  7. 7.
    Vogelstein, B. and Gillespie, D. (1979) Preparative and analytical purification of DNA from agarose. Proc. Natl. Acad. Sci. USA 76, 615–619.PubMedCrossRefGoogle Scholar
  8. 8.
    Boom, R., Sol, C. J. A., Salimans, M. M. M., Jansen, C. L., Wertheim-van Dillen, P. M. E., and van der Noordaa, J. (1990) Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503.PubMedGoogle Scholar
  9. 9.
    Hoss, M. and Paabo, S. (1993) DNA extraction from pleistocene bones by a silica-based purification method. Nucleic Acids Res. 21, 3913,3914.CrossRefGoogle Scholar
  10. 10.
    Walsh, P. S., Metzger, D. A., and Higuchi, R. (1991) Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513.PubMedGoogle Scholar
  11. 11.
    Bio-Rad Laboratories Catalog(1996) Bio-Rad Laboratories, Hercules, CA, p. 85.Google Scholar
  12. 12.
    Bio-Rad Laboratories Chelex 100 and Chelex 20 chelating ion exchange resin instruction manual (1996), pp. 1–24.Google Scholar
  13. 13.
    Singer-Sam, J., Tangua, R. L., and Riggs, A. D. (1989) Use of Chelex to improve the PCR signals from a small number of cells. Amplifications: A Forum for PCR Users 3, 11.Google Scholar
  14. 14.
    Budowle, B., Lindsey, J. A., DeCou, J. A., Koons, B. W., Giusti, A. M., and Comey, C. T. (1995) Validation and population studies of the loci LDLR, GYPA, HBGG, D7S8, and GC (PM loci), and HLA-DQα using a multiplex amplification and typing procedure. J. Forensic Sci. 40, 45–54.PubMedGoogle Scholar
  15. 15.
    Budowle, B., Chakroborty, R., Giusti, A. M., Eisenberg, A. J., and Allen, R. C. (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am. J. Human Genet. 48, 137–144.Google Scholar
  16. 16.
    Kimpton, C., Fisher, D., Watson, S., Adams, M., Urquhart, A., Lygo, J., and Gill, P. (1994) Evaluation of an automated DNA profiling system employing multiplex amplification of four tetrameric STR loci. Int. J. Legal Med. 106, 302.PubMedCrossRefGoogle Scholar
  17. 17.
    Holland, M. M., Fisher, D. L., Roby, R. K., Ruderman, J., Bryson, C., and Weedn, V. W. (1995) Mitochondrial DNA sequence analysis of human remains. Crime Lab. Dig. 22, 109–115.Google Scholar
  18. 18.
    Belgrader, P., Del Rio, S. A., Turner, K. A., Marion, M. A., Weaver, K. R., and Williams, P. E. (1995) Automated DNA purification and amplification from blood-stained cards using a robotic workstation. Biotechniques 19, 426–432.PubMedGoogle Scholar
  19. 19.
    Harvey, M. A., King, T. H., and Burghoff, R. (1995) Impregnated 903 blood collection paper: a tool for DNA preparation from dried blood spots for PCR amplification, in Research and Development, Schleicher and Schuell, Inc., Keene, NH.Google Scholar
  20. 20.
    Gyllensten, U. (1989) Direct sequencing of in vitro amplified DNA, in PCR Technology: Principles and Applications for DNA Amplification (Erlich, H. E., ed.), Stockton, New York, 45–60.Google Scholar
  21. 21.
    Comey, C. T., et al. (1994) DNA extraction strategies for amplified fragment length polymorphism analysis. J. Forensic Sci. 39, 1254–1269.Google Scholar
  22. 22.
    Waye, J. S., Presley, L. A., Budowle, B., Shutler, G. G., and Fourney, R. M. (1989) A simple and sensitive method for quantifying human genomic DNA in forensic specimen extracts. Biotechniques 7, 852–855.PubMedCrossRefGoogle Scholar
  23. 23.
    Clayton, T. M., Whitaker, J. P., Fisher, D. L., Lee, D. A., Holland, M. M., Weedn, V. W., Maguire, C. N., DiZinno, J. A., Kimpton, C. P., and ιll, P. (1995) Further validation of a quadruplex STR DNA typing system: a collaborative effort to identify victims of a mass disaster. Forensic Sci. Int. 76, 17–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Fisher, D. L., Holland, M. M., Mitchell, L., Sledzik, M. S., Wilcox, A. W., Wadhams, M. S. S., and Weedn, V. W. (1993) Extraction, evaluation, and amplification of DNA from decalcified and undecalcified United States Civil War bone. J. Forensic Sci. 38, 60–68.PubMedGoogle Scholar
  25. 25.
    Pflug, W., Mai, G., Wahl, S., Aab, S., Eberspacher, B., and Keller, U. (1992) A simple method to prevent inhibition of Taq polymerase and HinfI restriction enzyme in DNA analysis of stain material, in Advances in Forensic Haemogenetics, vol. 4, Springer-Verlag, Berlin, pp. 163–165.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • Jeanne M. Willard
    • 1
  • Dennis A. Lee
    • 1
  • Mitchell M. Holland
    • 1
  1. 1.The Armed Forces DNA Identification Laboratory, Office of the Armed Forces Medical ExaminerThe Armed Forces Institute of PathologyRockville

Personalised recommendations