Skip to main content

Fluorescent In Situ Hybridization (FISH) for DNA Probes in the Interphase and Metaphase Stages of the Cell Cycle

  • Protocol
Basic Cell Culture Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 75))

  • 2319 Accesses

Abstract

Fluorescent in situ hybridization (FISH) is a sensitive and powerful method for mapping and positioning DNA sequences in mammalian and other genome systems (13). DNA sequences ranging in size from <1 kb to several megabases can be localized to a specific chromosome site. The DNA is first labeled by nick translation with a non-radioactive immunofluorescent compound such as biotin-11-dUTP or digoxigenin-11-dUTP, then hybridized overnight to cell or chromosome preparations. The resulting signal can be detected under ultraviolet light with filters of wavelengths specific to the fluorescent compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichter, P., Cremer, T., Tang, C.-J. C., Watkins, P. C., and Manuelidis, L. (1988) Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc. Natl. Acad. Sci. USA 85, 9664–9668.

    Article  CAS  PubMed  Google Scholar 

  2. Singer, R. H., Lawrence, J. B., and Villnave, C. (1986) Optimization of in situ hybridization using isotopic and non-isotopic detection methods. Biotechniques 4, 230.

    CAS  Google Scholar 

  3. Pinkel, D., Straume, T., and Gray, J. W. (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 83, 2934–2938.

    Article  CAS  PubMed  Google Scholar 

  4. Rowley, J. D., Diaz, M. O., Espinosa, R., Patel, Y. D., Van Melle, E., Ziemin, S., Taillon-Miller, P., Lichter, P., Evans, G. A., Kersey, J. H., Ward, D. C., Domer, P. H., and Le Beau, M. M. (1990) Mapping chromosome band 11q23 in human acute leukemia with biotinylated probes: identification of 11q23 translocation breakpoints with a yeast artificial chromosome. Proc. Natl. Acad. Sci. USA 87, 9358–9362.

    Article  CAS  PubMed  Google Scholar 

  5. Lichter, P., Tang, C.-J. C., Call, K., Hermanson, G., Evans, G. A., Housman, D., and Ward, D. C. (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69.

    Article  CAS  PubMed  Google Scholar 

  6. Lengauer, C., Henn, T., Onyango, P., Francis, F., Lehrach, H., and Weith, A. (1994) Large-scale isolation of human 1p36-specific P1 clones and then use for fluorescence in situ hybridization. GATA 11, 140–147.

    CAS  Google Scholar 

  7. Shi, G., and Cannizzaro, L. A. (1996) Mapping of 29 YAC clones and identification of 3 YACs spanning the translocation t(3,8)(p14.2,q24.1) breakpoint at 8q24.1 in hereditary renal cell carcinoma. Cytogenet. Cell Genet. 75, 180–185.

    Article  CAS  PubMed  Google Scholar 

  8. Tkachuk, D. C., Westbrook, C. A., Andreeff, M., Donlon, T. A., Cleary, M. L., Suryanarayan, K., Homge, M., Redner, A., Gray, J., and Pinkel, D. (1990) Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science 250, 559–562.

    Article  CAS  PubMed  Google Scholar 

  9. Poddighe, P. J., Moesker, O., Smeets, D., Awwad, B. H., Ramackers, F. C. S., and Hopman, A. H. N. (1993) Interphase cytogenetics of hematological cancer. Comparison of classical karyotyping and in situ hybridization using a panel of eleven chromosome specific DNA probes. Cancer Res. 51, 1959–1967.

    Google Scholar 

  10. Xing, Y., Johnson, C. V., Dobner, P. R., and Lawrence, J. B. (1993) Higher level organization of individual gene transcription and RNA splicing. Science 259, 1326–1335.

    Article  CAS  PubMed  Google Scholar 

  11. Yokota, H., Van Den Engh, G., Mostert, M., and Trask, B. J. (1995) Treatment of cells with alkaline borate buffer extends the capability of interphase FISH mapping. Genomics 25, 485–491.

    Article  CAS  PubMed  Google Scholar 

  12. Rupa, D. S., Hasegawa, L., and Eastmond, D. A. (1995) Detection of chromosomal breakage in the 1cen-1q12 region of interphase human lymphocytes using multicolor fluorescence in situ hybridization with tandem DNA probes. Cancer Res. 55, 640–645.

    CAS  PubMed  Google Scholar 

  13. Ariyama, T., Inazawa, J., Ezaki, T., Nakamura, Y., Horn, A., and Abe, T. (1995) High-resolution cytogenetic mapping of the short arm of chromosome 1 with newly isolated 411 cosmid markers by fluorescence in situ hybridization. The precise order of 18 markers on 1p36.1 on prophase chromosomes and “stretched” DNAs. Genomics 25, 114–123.

    Article  CAS  PubMed  Google Scholar 

  14. Trask, B., Pinkel, D., and Van Den Engh, G. (1989) The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5, 710–717.

    Article  CAS  PubMed  Google Scholar 

  15. Lawrence, J. B., Singer, R. H., and McNeil, J. A. (1990) Interphase and metaphase resolution of different distances within the human dystrophin gene. Science 249, 928–932.

    Article  CAS  PubMed  Google Scholar 

  16. Brandriff, B., Gordon, L., and Trask, B. (1991) A new system for high-resolution DNA sequence mapping in interphase pronuclei. Genomics 10, 75–82.

    Article  CAS  PubMed  Google Scholar 

  17. Lawrence, J. B. and Singer, R. H. (1991) Spatial organization of nucleic acid sequences within cells. Sem. Cell Biol. 2, 82–101.

    Google Scholar 

  18. Trask, B. J., Massa, H., Kenwrick, S., and Gitschier, J. (1991) Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am. J. Hum. Genet. 48, 1–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Ried, T., Baldini, A., Rand, T. C., and Ward, D. C. (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. Natl. Acad. Sci. USA 89, 1388–1392.

    Article  CAS  PubMed  Google Scholar 

  20. Cannizzaro, L. A. and Emanuel, B. (1984) Protocol for G-banding after in situ hybridization. Cytogenet. Cell Genet. 38, 308.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Cannizzaro, L.A., Shi, G. (1997). Fluorescent In Situ Hybridization (FISH) for DNA Probes in the Interphase and Metaphase Stages of the Cell Cycle. In: Pollard, J.W., Walker, J.M. (eds) Basic Cell Culture Protocols. Methods in Molecular Biology™, vol 75. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-441-0:313

Download citation

  • DOI: https://doi.org/10.1385/0-89603-441-0:313

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-441-9

  • Online ISBN: 978-1-59259-561-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics