Skip to main content

Immobilization of Bacteria in Macro- and Microparticles

  • Protocol
Bioremediation Protocols

Part of the book series: Methods in Biotechnology™ ((MIBT,volume 2))

Abstract

Microencapsulation of bacteria is a technique that offers some advantages to the scientist interested in bioremediation applications. Several studies have demonstrated the utility of using immobilized cells in btoreactor (see Chapter 6) or bioremediation settings (it1-it4). In this chapter, we describe three protocols for the immobilization of bacteria in macroparticles (200 µm-3 mm diameter) and microparticles (2-200 µm diameter) composed of different polymers. We provide information on the choice of polymers and particle sizes and the environmental applications of rmmobilized cells. Other sources provide information about immobilization and encapsulation that is beyond the scope of this chapter, such as the encapsulation of enzymes or fungi (see Chapter 7) or eukaryotic cells. Kolot (it5) provides protocols for immobilizing yeast, bacteria, and enzymes for industrial apphcations. Akin (it6) (and references therem) provide a review of how rmmobrlization may enhance several catalytic processes The ACS symposium proceedings, Immobilized Microbial Cells (it7), provides summary accounts of tmmobilizing bacteria in several natural and synthetic polymers. Saher (it8) also provides some recent developments in the immobilization of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levmson, W. E., Stormo, K. E., Tao, H-L., and Crawford, R L (1994) Hazardous waste cleanup and treatment with encapsulated and entrapped mlcroorgamsms, in Biological Degradation and Bloremedlatlon of Toxic Chemicals (Chaudhry, G. R., ed ), Dloscondes Press, Portland OR, pp 455–469

    Google Scholar 

  2. Colwell, R R., Levm, M. A, and Gealt, M A. (1993) Future directions in bloremedlatlon, in Blotransformatlon of Industrial and Hazardous Waste (Levm, M A and Gealt, M. A., eds.), McGraw Hill, New York, pp 309–321.

    Google Scholar 

  3. Crawford, R L., O’Reilly, K T., and Tao, H.-L (1990) Microorganism stablhzatlon for in situ degradation of toxic chemicals, in Biotechnology and Biodegradatzon (Kamely, D., Chakrabarty, A, and Omenn, G S., eds), Gulf Co, Houston, TX, pp 203–211

    Google Scholar 

  4. Kennedy, J F., Melo, E H M., and Jumel, K (1985) Immoblhzed blosystems in research and industry, Biotechnol Genet. Engin Rev 7, 297–313.

    Google Scholar 

  5. Kolot, F B (1988) Immobilized mlcroblal systems prmciples, techniques and mdustrlal apphcatlons. R. E Krueger, Malabar, FL

    Google Scholar 

  6. Akm, C. (1987) Biocatalysls with lmmoblhzed ceils Bzotech. Genet. Engin Rev 5, 319–367.

    Google Scholar 

  7. Venkatsubramanian, K (1979) Immobilized microbial cells ACS symposium series. Washington, DC

    Google Scholar 

  8. Salter, G J and Kell, D. B (1991) New materials and technology for cell immobilization Curr. Opm Biotechnol. 2, 385–389.

    Article  CAS  Google Scholar 

  9. Steenson, L. R., Klaenhammer, T. R., and Swaisgood, H. E (1987) Calcium alginate-immoblhzed cultures of lactic streptococci are protected from bacteriophages J. Dairy Scl. 70, 1121–1127

    Article  CAS  Google Scholar 

  10. Tanaka, H., Ohta, T., Harada, S., Ogbonna, J C., and YaJima, M (1994) Development of a fermentation method using immobihzed cells under unsterile conditions. 1. Protection of tmmobihzed cells agamst anti-microbial substances Appl. Microbiol. Biotechnol 41, 544–550.

    Article  CAS  Google Scholar 

  11. Stormo, K. E. and Crawford, R. L (1992) Preparation of encapsulated microbial cells for envuonmental applications. Appl Environ. Microbiol 58, 727–730

    PubMed  CAS  Google Scholar 

  12. Stormo, K E. and Crawford, R. L. (1994) Pentachlorophenol degradatron by microencapsulated Flavobacterta and their enhanced survival for in situ aquifer remediation,in Applied Biotechnology for Site Remediation (Hmchee, R. E., D B. Anderson, F. B. Mettmg, Jr, and G. D. Sayles, eds.), Lewis Publishers, Boca Raton, FL, pp 422–427

    Google Scholar 

  13. King, G A and Goosen, M F. A. (1993) Cell immobilization technology an overvrew, in Fundamentals of Animal Cell Encapsulation and Immobtltzation (Goosen, M. F A, ed.), CRC, Boca Raton, FL, pp. 1–6.

    Google Scholar 

  14. Beunmk, J and Rehm, H-J (1990) Coupled reductive and oxldatlve degradation of 4-chloro-2-mtrophenol by a co-immobihzed mixed culture system. Appl. Mtcrobiol. Biotechnol. 34, 108–115

    Google Scholar 

  15. De Taxis du Poet, P., Dhulster, P., Barbotin, J-N., and Thomas, D. (1986) Plasmid inheritabihty and biomass production: comparison between free and immobilized cell cultures of Escherichza coli BZ18 (pTG201) without selection pressure J Bacterial 165, 871–877.

    CAS  Google Scholar 

  16. Mac Rae, I. C. (1985) Removal of pesticides in water by microbial ceils adsorbed to magnetite. Water Res. 19, 825–830.

    Article  CAS  Google Scholar 

  17. Heinze, U. and Rehm, H.-J. (1993) Biodegradation of dichloroacetic acid by entrapped and adsorptive immobilized Xanthobacter autotropzcus GJ10. Appt. Mtcrobtol Biotechnol 40, 158–164

    CAS  Google Scholar 

  18. Karsten, G. and Simon, H (1993) Immobilization of Proteus vulgaris for the reduction of 2-0-0 acids with hydrogen gas or formate to D-2-hydroxy acids Appl. Mtcrobtol Biotechnol. 38, 441–446.

    CAS  Google Scholar 

  19. Hooijmans, C. M., Bnasco, C A., Huang, J., Geraats, B B. M., Barbotm, J N., Thomas, D., and Luyben, K. C. A M. (1990) Measurement of oxygen concentration gradients in gel-immobilized recombinant Escherichia coli Appl Microbzol Biotechnol. 33, 611–618.

    Article  CAS  Google Scholar 

  20. Omar, S. H. (1993) Oxygen diffusion through gels employed for immobihzation 2 In the presence of microorgamsms. Appl. Microbiol. Biotechnol. 40, 173–181

    CAS  Google Scholar 

  21. Omar, S. H. (1993) Oxygen diffusion through gels employed for immobihzation 1 In the absence of mtcroorgamsms. Appl. Microbiol. Biotechnol. 40, 1–6.

    CAS  Google Scholar 

  22. Bettman, H and Rehm, H-J (1984) Degradation of phenol by polymer entrapped mrcroorgamsms Appl Microbiol Biotechnol. 20, 285–290.

    Article  Google Scholar 

  23. Etkmeier, H., Westmeier, F., and Rehm, H-J. (1984) Morphologtcal development of Aspergzllus niger tmmobrltzed in Ca-algmate and K-carrageenan Appl Microbiol Biotechnol. 19, 53–57

    Google Scholar 

  24. Westmerer, F and Rehm, H-J (1987) Degradation of 4-chlorophenol by entrapped Alcalzgenes sp A 7-2 Appl Microbiol Biotechnol 22, 301–305

    Article  Google Scholar 

  25. Hertzberg, S., Moen, E., Vogelsang, C., and Ostgaard, K (1995) Mixed photocross-lmked polyvmyl alcohol and calcmm-algmate gels for cell entrapment. Appl. Mzcrobiol Biotechnol 43, 10–17

    Article  CAS  Google Scholar 

  26. Bnnbaum, S., Pendleton, R., Larsson, P., and Mosbach, K. (1981) Covalent stabthzation of algmate gel for entrapment of hvmg whole cells Biotechnol. Lett 3, 393–400

    Google Scholar 

  27. IrJima, S., Mano, T., Tamgucht, M., and Kobayashr, T (1988) Immobihzatron of hybrtdoma cells with algmate and urethane polymer and improved monoclonal antibody production Appl Microbiol Biotechnol 28, 572–576

    Google Scholar 

  28. Petrich, C R., Stormo, K. E., Knaebel, D. B., Ralston, D. R., and Crawford, R L. (1995) A prehmmary assessment of field transport experiments using encapsulated cells, in Bioaugmentation for Site Remediation (Hmchee, R. E., Fredrickson, J., and Alleman, B. C., eds.), Batelle, Columbus, OH, pp 237–244

    Google Scholar 

  29. Chapatwala, K D., Hall, E M., and Babu, G. R. V (1993) Degradation of mtriles and amides by the rmmobrhzed cells of Pseudomonas putida. World J Microbiol 9, 483–486.

    Article  CAS  Google Scholar 

  30. Fravel, D R., Marots, J. J., Lumsden, R. D., and Connick, Jr., W J (1985) Encapsulatron of potential brocontrol agents in an algmate clay matrrx Phytopathology 75, 774–777

    Article  Google Scholar 

  31. Chapatwala, K D., Babu, G. R. V., and Wolfram, J. H. (1993) Screening of encapsulated microbial cells for the degradation of morgamc cyamdes J Ind. Microbiol 11, 69–72

    Article  CAS  Google Scholar 

  32. Cantarella, M., Mtgharest, C., Tafurt, M G., and Alfam, F (1984) Immobthzation of yeast cells in hydroxyethylmethacrylate gels Appl Microbiol Biotechnol 20, 233–234

    Article  CAS  Google Scholar 

  33. Gharapetran, H., Davies, N. A., and Sun, A. M (1986) Encapsulation of viable cells within polyacrylate membranes Biotechnol Bzoeng 28, 1595–1600

    Article  Google Scholar 

  34. Stevenson, W T K., and Sefton, M V (1993) Development of polyacrylated mrcrocapsules, in Fundamentals of Anzmal Cell Encapsulatzon and Immobzlzzatzon (Goosen, M. F. A., ed.), CRC, Boca Raton, FL, pp 143–181

    Google Scholar 

  35. Sefton, M V and Broughton, R L (1982) Microencapsulation of erythrocytes Biochim Biophys Acta 717, 473–477

    PubMed  CAS  Google Scholar 

  36. Monshipourr, M and Neufteld, R J (1991) Activity and drstrtbution of urease activity followmg microencapsulation with polyamide membranes Enzyme Mzcrob Technol 13, 309–313

    Article  Google Scholar 

  37. Ntlsson, K W., Scheirer, W., Mertm, 0. W., Ostberg, L., Ltehl, E., Katmger, H W D., and Mosbach, K (1983) Entrapment of ammal cells for production of monoclonal antibodres and other bromolecules Nature 302, 629–630

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Knaebel, D.B., Stormo, K.E., Crawford, R.L. (1997). Immobilization of Bacteria in Macro- and Microparticles. In: Bioremediation Protocols. Methods in Biotechnology™, vol 2. Humana Press. https://doi.org/10.1385/0-89603-437-2:67

Download citation

  • DOI: https://doi.org/10.1385/0-89603-437-2:67

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-437-2

  • Online ISBN: 978-1-59259-482-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics