Skip to main content

Heavy Metal Bioremediation of Soil

  • Protocol
Bioremediation Protocols

Part of the book series: Methods in Biotechnologyâ„¢ ((MIBT,volume 2))

Abstract

Several metals (see also chapter 7 and chapter 11) are essential for biological systems and must be present in a certam concentration range. Too low concentrations lead to a decrease in metabolic activity. At too high concentrations these metals lead to toxicity. Nonessential metals are tolerated at very low concentrattons and inhibit metabolic activny at higher concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. HÓfte, M., Dong, Q., Kourambos, S., Krishnapillal, V., Sherratt, D., and Mergeay, M. (1994) The sss gene product, which affects pyoverdm production in Pseudomonas aeruginosa 7NSK2, is a site-specific recombinase Mol Microbiol. 14, 1011–1020

    Article  PubMed  Google Scholar 

  2. Gilis, A., Khan, M. A., Cornelis, P., Meyer, J. M., Mergeay, M., and van der Lehe, D (1996) Siderophore-mediated iron uptake in Alcaligenes eutrophus CH34 and ldentlflcation of aleB encoding ferric-alcahgm E receptor. J Bacterzol. 778, 5499–5507.

    Google Scholar 

  3. Diels, L. and Mergeay, M (1990) DNA probe-mediated detectlon of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 56, 1485–1491

    PubMed  CAS  Google Scholar 

  4. Mergeay, M., Houba, C., and Gents, J. (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt and zinc ions evidence from curmg in a Pseudomonas Arch. Int Physiol Biochem 86, 440,441

    CAS  Google Scholar 

  5. Mergeay, M., Noes, D., Schlegel, H. G., Gerits, J., Charles, P., and Van Gijsegem, F. (1985) Alcaligenes eutrophus CH34 IS a facultatlve chemohthotroph with plasmld-bound resistance to heavy metals J Bacterial 162, 328–334

    CAS  Google Scholar 

  6. Noes, D., Mergeay, M., Friedrich, B., and Schlegel, H. G (1987) Cloning of plas-mid genes encodmg reststance to cadmmm, zinc, and cobalt in Alcaligenes eutrophus CH34 J Bacteriol. 169, 4865–4868.

    Google Scholar 

  7. Nies, D., Nies, A., Chu, L., and Sliver, S. (1989) Expression and nucleotlde sequence of a plasmld-determined dlvalent cation efflux system from Alcaligenes eutrophus Proc Natl Acad. Sci USA 86, 7351–7356.

    Article  PubMed  CAS  Google Scholar 

  8. Nies, A., Noes, D. H., and Sdver, S (1990) Nucleotlde sequence and expresslon of a plasmld-encoded chromate resistance determmatlon from Alcaligenes eutrophus. J Biol Chem. 265, 5648–5653

    PubMed  CAS  Google Scholar 

  9. Nies, D and Silver, S (1989) Plasmid-determmed inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol. 171, 4073–4075.

    PubMed  CAS  Google Scholar 

  10. Nies, D. (1992) czcR and czcD, gene products affecting regulation of resistance to cobalt, zinc and cadmium (CZC system) in Alcaligenes eutrophus J. Bacterial 174, 8102–8110.

    CAS  Google Scholar 

  11. Slddlqui, R A., Benthm, K., and Schlegel, H G. (1989) Cloning of pMOL28-encoded nrckel resistance genes and expresslon of the genes in Alcaligenes eutrophus and Pseudomonas spp J Bacteriol. 171, 5071–5078

    Google Scholar 

  12. Sensfuss, C and Schlegel, H. G. (1988) Plasmld pMOL28-encoded resistance to nickel is due to specific efflux FEMS Mzcrobzol Lett 55, 295–298

    Article  CAS  Google Scholar 

  13. Collard, J M., Corbisler, P., Duels, L., Dong, Q., Jeanthon, C., Mergeay, M, Taghavl, S., van der Lehe, D., Wllmotte, A., and Wuertz, S (1994) Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34 mechanisms and apphcatlons FEMS Microbiol. Rev 14, 405–414

    Article  PubMed  CAS  Google Scholar 

  14. Llesegang, H., Lemke, K., Siddiqui, R A., and Schlegel, H. G. (1993) Characterization of the inducible mckel and cobalt resistance determinant cnr from pMOL28 of Alcalzgenes eutrophus CH34 J Bacteriol 175, 767–778

    Google Scholar 

  15. Mann, S. (1988) Molecular recognition in biominerahzatton. Nature 332, 119–124.

    Article  CAS  Google Scholar 

  16. Diels, L. (1990) Accumulation and precipitation of Cd and Zn ions by Alcaligenes eutrophus strams, in Biohydrometullurgy (Salley, J., McCready, R. G. L., and Wichlacz, P. Z., eds ), CANMET SP89-10, pp 369–377

    Google Scholar 

  17. Duels, L., Van Roy, S., Mergeay, M, Doyen, W., Taghavr, S., and Leysen, R (1993) Immobihzation of bacteria in composite membranes and development of tubular membrane reactors for heavy metal recuperation, in Effective Membrane Processes. New Perspectives (Paterson, R., ed.), Kluwer Academic, London, pp 275–293

    Google Scholar 

  18. Duels, L., Van Roy, S., Taghavi, S., Doyen, W., Leysen, R., and Mergeay, M (1993) The use of Alcallgenes eutrophus tmmobthzed in a tubular membrane reactor for heavy metal recuperation, in Blohydrometallurgical Technologies (Torma, A E, Apel, M. L., and Brterley, C. L, eds.), The Minerals, Metals & Materials Society, pp. 133–144.

    Google Scholar 

  19. Schultze-Lam, S., Harauz, G., and Beveridge, T J (1992) Parttcipatron of cyanobacterlal S layer in fine-gram mineral formatton J Bacteriol. 174, 7971–7981

    PubMed  CAS  Google Scholar 

  20. Diels, L., Dong, Q., van der Lehe, D., Baeyens, W., and Mergeay, M. (1995) The czc operon of Alcallgenes eutrophus CH34 from resistance mechanism to the removal of heavy metals. J. Ind. Microbiol. 14, 142–153.

    Article  PubMed  CAS  Google Scholar 

  21. Duels, L., Van Roy, S., Somers, K., Willems, I., Doyen, W., Mergeay, M., Springael, D., and Leysen, R. (1995) The use of bacteria tmmobihzed in tubular membrane reactors for heavy metal recovery and degradation of chlormated aro-matics. J. Membr Sci 100, 249–258

    Article  Google Scholar 

  22. Kasan, H. C. and Baecker, A. A. W. (1989) Zinc bioaccumulation by Pseudomonas cepacta. Microbios 58 35–42

    CAS  Google Scholar 

  23. Schlegel, H G., Kaltwasser, H., and Gottschalk, G. (1961) Em Sumbersverfahren zur Kultur wasserstoffoxidrerender Bakterren Wachstum physiologische Untersuchungen. Arch Microbiol 38, 205–222

    Google Scholar 

  24. Duels, L., Carpels, M., Geuzens, E., Mergeay, M., and Rymen, T. (1992) Method and device for cleaning soil polluted by at least one heavy metal. European Patent 92203049.9.

    Google Scholar 

  25. Van Gestel, C A. M., Adema, D M. M., de Boer, J. L. M., and de Jong, P (1988) The influence of soil clean-up on the bioavatlabihty of metals, in Contaminated Soil’ 88 (Wolf, K., van den Brink, J., and Colon, F. J., eds.), Kluwer Academic, Dordrecht, pp. 63–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Diels, L. (1997). Heavy Metal Bioremediation of Soil. In: Bioremediation Protocols. Methods in Biotechnologyâ„¢, vol 2. Humana Press. https://doi.org/10.1385/0-89603-437-2:283

Download citation

  • DOI: https://doi.org/10.1385/0-89603-437-2:283

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-437-2

  • Online ISBN: 978-1-59259-482-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics