Advertisement

Introduction to Pichia pastoris

  • David R. Higgins
  • James M. Cregg
Part of the Methods in Molecular Biology™ book series (MIMB, volume 103)

Abstract

Pichia pastoris has become a highly successful system for the expression of heterologous genes. Several factors have contributed to its rapid acceptance, the most important of which include:
  1. 1.

    A promoter derived from the alcohol oxidase I (AOX1) gene of P. pastoris that is uniquely suited for the controlled expression of foreign genes;

     
  2. 2.

    The similarity of techniques needed for the molecular genetic manipulation of P. pastoris to those of Saccharomyces cerevisiae, one of the most well-characterized experimental systems in modern biology;

     
  3. 3.

    The strong preference of P. pastoris for respiratory growth, a key physiological trait that greatly facilitates its culturing at high cell densities relative to fermentative yeasts; and

     
  4. 4.

    A 1993 decision by Phillips Petroleum Company (continued by Research Corporation Technologies [RTC]) to release the P. pastoris expression system to academic research laboratories, the consequence of which has been an explosion in the knowledge base of the system (Fig. 1).

     

Keywords

Foreign Protein Alcohol Oxidase AOX1 Promoter AOX1 Gene Unique Restriction Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Romanos, M. A., Scorer, C. A., and Clare, J. J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423–488.PubMedCrossRefGoogle Scholar
  2. 2.
    Cregg, J. M., Vedvick, T. S., and Raschke, W. C. (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11, 905–910.PubMedCrossRefGoogle Scholar
  3. 3.
    Romanos, M. (1995) Advances in the use of Pichia pastoris pastoris for high-level expression. Curr. Opin. Biotechnol. 6, 527–533.CrossRefGoogle Scholar
  4. 4.
    Cregg, J. M. (1998) Expression in the methylotrophic yeast Pichia pastoris, in Nature: The Palette for the Art of Expression (Fernandez, J. and Hoeffler, J., eds.), Academic, San Diego, in press.Google Scholar
  5. 5.
    Cregg, J. M. and Higgins, D. R. (1995) Production of foreign proteins in the yeast Pichia pastoris. Can. J. Bot. 73(Suppl. 1), S981–S987.Google Scholar
  6. 6.
    Sreekrishna, K., Brankamp, R. G., Kropp, K. E., Blankenship, D. T., Tsay, J. T., Smith, P. L., Wierschke, J. D., Subramaniam, A., and Birkenberger, L. A. (1997) Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene 190, 55–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Gellissen, G. and Hollenberg, C. P. (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene 190, 87–97.PubMedCrossRefGoogle Scholar
  8. 8.
    Higgins, D. R. (1995) Overview of protein expression in Pichia pastoris, in Current Protocols in Protein Science, Supplement 2 (Wingfield, P. T., ed.), Wiley, New York, pp. 5.7.1–5.7.16.Google Scholar
  9. 9.
    Sreekrishna, K. (1993) Strategies for optimizing protein expression and secretion in the methylotrophic yeast Pichia pastoris, in Industrial Microorganisms: Basic and Applied Molecular Genetics (Baltz, R. H., Hegeman, G. D., and Skatrud, P. L., eds.), American Society for Microbiology, Washington, DC, pp. 119–126.Google Scholar
  10. 10.
    Ogata, K., Nishikawa, H., and Ohsugi, M. (1969) A yeast capable of utilizing methanol. Agric. Biol. Chem. 33, 1519,1520.Google Scholar
  11. 11.
    Wegner, G. (1990) Emerging applications of methylotrophic yeasts. FEMS Microbiol. Rev. 87, 279–284.CrossRefGoogle Scholar
  12. 12.
    Ellis, S. B., Brust, P. F., Koutz, P. J., Waters, A. F., Harpold, M. M., and Gingeras, T. R. (1985) Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol. Cell. Biol. 5, 1111–1121.PubMedGoogle Scholar
  13. 13.
    Cregg, J. M., Barringer, K. J., Hessler, A. Y., and Madden, K. R. (1985) Pichia pastoris as a host system for transformations. Mol. Cell. Biol. 5, 3376–3385.PubMedGoogle Scholar
  14. 14.
    Tschopp, J. F., Brust, P. F., Cregg, J. M., Stillman, C. A., and Gingeras, T. R. (1987) Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res. 15, 3859–3876.PubMedCrossRefGoogle Scholar
  15. 15.
    Cregg, J. M. and Madden, K. R. (1987) Development of yeast transformation systems and construction of methanol-utilization-defective mutants of Pichia pastoris gene disruption, in Biological Research on Yeasts, vol. II (Stewart, G. G., Russell, I., Klein, R. D., and Hiebsch, R. R., eds.), CRC, Boca Raton, FL, pp. 1–18.Google Scholar
  16. 16.
    Cregg, J. M., Madden, K. R., Barringer, K. J., Thill, G. P., and Stillman, C. A. (1989) Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol. Cell. Biol. 9, 1316–1323.PubMedGoogle Scholar
  17. 17.
    Koutz, P. J., Davis, G. R., Stillman, C., Barringer, K., Cregg, J. M., and Thill, G. (1989) Structural comparison of the Pichia pastoris alcohol oxidase genes. Yeast 5, 167–177.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee, J.-D. and Komagata, K. (1980) Taxonomic study of methanol-assimilating yeasts. J. Gen. Appl. Microbiol. 26, 133–158.CrossRefGoogle Scholar
  19. 19.
    Veenhuis, M., van Dijken, J. P., and Harder, W. (1983) The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv. Microb. Physiol. 24, 1–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Couderc, R. and Baratti, J. (1980) Oxidation of methanol by the yeast Pichia pastoris: purification and properties of alcohol oxidase. Agric. Biol. Chem. 44, 2279–2289.Google Scholar
  21. 21.
    Tschopp, J. F., Sverlow, G., Kosson, R., Craig, W., and Grinna, L. (1987) High level secretion of glycosylated invertase in the methylotrophic yeast Pichia pastoris. Bio/Technology 5, 1305–1308.CrossRefGoogle Scholar
  22. 22.
    Barr, K. A., Hopkins, S. A., and Sreekrishna, K. (1992) Protocol for efficient secretion of HSA developed from Pichia pastoris. Pharm. Eng. 12, 48–51.Google Scholar
  23. 23.
    Cregg, J. M., Tschopp, J. F., Stillman, C., Siegel, R., Akong, M., Craig, W. S., Buckholz, R. G., Madden, K. R., Kellaris, P. A., Davis, G. R., Smiley, B. L., Cruze, J., Torregrossa, R., Velicelebi, G., and Thill, G. P. (1987) High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. Bio/Technology 5, 479–485.CrossRefGoogle Scholar
  24. 24.
    Chirulova, V., Cregg, J. M., and Meagher, M. M. (1997) Recombinant protein production in an alcohol oxidase-defective strain of Pichia pastoris in fed batch fermentations. Enzyme Microb. Technol. 21, 277–283.CrossRefGoogle Scholar
  25. 25.
    Larouche, Y., Storme, V., De Muetter, J., Messens, J., and Lauwereys, M. (1994) High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast Pichia pastoris. Bio/Technology 12, 1119–1124.CrossRefGoogle Scholar
  26. 26.
    Clare, J. J., Romanos, M. A., Rayment, F. B., Rowedder, J. E., Smith, M. A., Payne, M. M., Sreekrishna, K., and Henwood, C. A. (1991) Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene 105, 205–212.PubMedCrossRefGoogle Scholar
  27. 27.
    Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. L., and Cregg, J. M. (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186, 37–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Sreekrishna, K., Nelles, L., Potenz, R., Cruze, J., Mazzaferro, P., Fish, W., Fuke, M., Holden, K., Phelps, D., Wood, P., and Parker, K. (1989) High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris. Biochemistry 28, 4117–4125.PubMedCrossRefGoogle Scholar
  29. 29.
    Clare, J. J., Rayment, F. B., Ballantine, S. P., Sreekrishna, K., and Romanos, M. A. (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/Technology 9, 455–460.PubMedCrossRefGoogle Scholar
  30. 30.
    Romanos, M. A., Clare, J. J., Beesley, K. M., Rayment, F. B., Ballantine, S. P., Makoff, A. J., Dougan, G., Fairweather, N. F., and Charles, I. G. (1991) Recombinant Bordetella pertussis pertactin (P69) from the yeast Pichia pastoris: high-level production and immunological properties. Vaccine 9, 901–906.PubMedCrossRefGoogle Scholar
  31. 31.
    Wung, J. L., and Gascoigne, N. R. (1996) Antibody screening for secreted proteins expressed in Pichia pastoris. Bio/Techniques 21, 808, 810, 812.Google Scholar
  32. 32.
    Trimble, R. B., Atkinson, P. H., Tschopp, J. F., Townsend, R. R., and Maley, F. (1991) Structure of oligosaccharides on Saccharomyces SUC2 invertase secreted by the methylotrophic yeast Pichia pastoris. J. Biol. Chem. 266, 22,807–22,817.PubMedGoogle Scholar
  33. 33.
    Scorer, C. A., Clare, J. J., McCombie, W. R., Romanos, M. A., and Sreekrishna, K. (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Bio/Technology 12, 181–184.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • David R. Higgins
    • 1
  • James M. Cregg
    • 2
  1. 1.Chiron Technologies/Center for Gene TherapySan Diego
  2. 2.Department of Biochemistry and Molecular BiologyOregon Graduate Institute of Science and TechnologyPortland

Personalised recommendations