Phosphorylation State-Specific Antibodies

  • Andrew J. Czernik
  • Jeffrey Mathers
  • Sheenah M. Mische
Part of the Neuromethods book series (NM, volume 30)


Over the past four decades, studies directed toward the elucidation of mechanisms involved in the hormonal regulation of metabolism have burgeoned into the field we now know as cellular signal transduction. Both then and now, the role of protein phosphorylation has been central to these investigations, and most physiological processes appear to be subject to phosphorylation-dependent modulation. Detection and quantitation of changes in the state of phosphorylation of specific proteins is of great utility in the quest to establish the function of a given protein and the consequences of its reversible phosphorylation. Two methods commonly used to measure protein phosphorylation and dephosphorylation in cell preparations employ prelabeling with ♪32P or back phosphorylation (see Chapters l-3). These methods continue to be very effective and have advantages for many test systems, but they do have several practical and theoretical limitations (Nestler and Greengard, 1984; Chapters 1–3, this volume). Based in large part on the successful use of short synthetic peptides to produce epitope-targeted antibodies (Lerner, 1982; Sutcliffe et al., 19831, an immunochemical approach became an attractive alternative for detecting changes in the state of phosphorylation of specific proteins at a specific site. The use of phosphorylation state-specific antibodies takes advantage of the sensitivity and selectivity afforded by immunochemical methodology, combined with relatively simple preparation and potentially broad applications.


Phosphorylation Site Free Sulfhydryl Group Short Synthetic Peptide Benzyl Phosphonate Alanyl Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arendt, A., Palczewski, K., Moore, W. T., Caprroli, R. M., McDowell, J. H., and Hargrave, P. A. (1989) Synthesis of phosphopeptides con-taming O-phosphoserine and O-phosphothreonine. lnt J. Pep Pro-tein Res 33, 468–476.CrossRefGoogle Scholar
  2. Biernat, J, Mandelkow, E. M., Schroter, C., Lichtenberg-Kraag, B., Sterner, B, Berling, B., Meyer, H., Mercken, M., Vandermeeren, A, Goedert, M, and Mandelkow, E. (1992) The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule-binding region. EMBO J 11, 1593–1597.PubMedGoogle Scholar
  3. Coghlan, M. P., Pillay, T. S, Tavare, J M., and Siddle, K. (1994) Site-specific anti-phosphopeptide antibodies: use in assessing insulin receptor serine/threonine phosphorylation state and identification of serme-1327 as a novel site of phorbol esterinduced phosphorylation. Btochem J. 303, 893–899.Google Scholar
  4. Czernik, A. J., Girault, J.-A., Nairn, A. C., Chen, J, Snyder, G., Kebabian, J, and Greengard, P. (1991) Production of phosphorylation state-specific antibodies, in Methods in Enzymology, Protein Phosphorylation, Part B vol 201 (Hunter, T and Sefton, B. M, eds.), Academic, San Diego, CA, pp. 264–283.Google Scholar
  5. Czernik, A. J., Mathers, J, Tsou, K., Greengard, P., and Mische, S M. (1995) Phosphorylation state-specific antibodies preparation and applications Neuroprotocols 6, 56–61.Google Scholar
  6. Davis, F. M., Tsao, T. Y, Fowler, S. K., and Rao, P. N. (1983) Monoclonal antibodies to mitotic cells. Proc Nat1 Acad Sci USA 80, 2926–2930CrossRefGoogle Scholar
  7. De Jongh, K. S., Murphy, B. J., Colvin, A A., Hell, J. W., Takahashi, M., and Catterall, W. A. (1996) Specific phosphorylation of a site in the fulllength form of the αl subunit of the cardiac L~type calcium channel by adenosme 3′, 5′-cyclic monophosphate~dependent protein kinase. Biochemistry 35, 10,392–10,402.PubMedCrossRefGoogle Scholar
  8. Drago, G. A. and Colyer, J. (1994) Discrimination between two sites of phosphorylation on adjacent ammo acids by phosphorylation sitespecific antibodies to phospholamban. J Biol Chem 269, 25,073–25,077.PubMedGoogle Scholar
  9. Fields, C G, Lloyd, D H, Macdonald, R. L, Ottesen, K. M., and Noble, R L. (1990) HBTU activation for automated Fmoc solid phase peptide synthesis. Peptide Res 4, 95–101.Google Scholar
  10. Fisone, G., Cheng, S. X.-J., Nairn, A. C., Czernik, A. J., Hemmings, H. C, Jr, Höog, J. O., Bertorello, A M., Kaiser, R., Bergman, T., J#x00F6;rnvall, H., Aperia, A., and Greengard, P (1994) Identification of the phosphorylation site for cAMP-dependent protein kinase on the Na+, K+-ATPase and effects of sitedirected mutagenesis. J.Biol Chem 269, 9368–9373.PubMedGoogle Scholar
  11. Frank, A. W. (1984) Synthesis and properties of N−,O−, and S-phospho-derivatives of amino acids, peptides and proteins. CRC Crit Rev. Biochem 16, 51–101.PubMedCrossRefGoogle Scholar
  12. King, D. S., Fields, C. G., and Fields, G. B (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis lnt J Pep Protein Res 36, 255–266.CrossRefGoogle Scholar
  13. Ginty, D. D., Kornhauser, J M, Thompson, M. A., Bading, H., Mayo, K. E., Takahashi, J. S., and Greenberg, M. E. (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260, 238–241.PubMedCrossRefGoogle Scholar
  14. Goedert, M., Takes, R., Crowther, R. A., Six, J., Lübke, U., Vandermeeren, M., Cras, P., Trojanowski, J. Q., and Lee, V. M.−Y (1993) The abnormal phosphorylation of tau protein at Ser 202 in Alzheimer disease recapitulates phosphorylation during development. Proc Natl Acad Sci. USA 90, 5066–5070.PubMedCrossRefGoogle Scholar
  15. Goldstein, M., Lee, K. Y., Lew, J. Y., Harada, K., Wu, J., Haycock, J. W., Hokfelt, T., and Deutch, A. Y (1995) Antibodies to a segment of tyrosine hydroxylase phosphorylated at serme−40. J.Neurochem. 64, 2281–2287.PubMedCrossRefGoogle Scholar
  16. Gordon-Weeks, P. R., Mansfield, S. G., Alberto, C., Johnstone, M., and Moya, F. (1993) A phosphorylation epitope on MAP 1B that is transiently expressed in growing axons in the developing rat nervous system. Eur J. Neurosci 5, 1302–1311.PubMedCrossRefGoogle Scholar
  17. Greengard, P., Valtorta, F., Czernik, A. J., and Benfenati, F. (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785.PubMedCrossRefGoogle Scholar
  18. Grundke-Iqbal, I., Iqbal, K., Tung, Y.−C., Quinlan, M., Wisniewski, H M., and Binder, L. I. (1986) Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad Sci USA 83, 4913–4917.PubMedCrossRefGoogle Scholar
  19. Harlow, E. and Lane, D. (1988) Antibodies A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 288–318.Google Scholar
  20. Hemmings, H. C., Jr., Nairn, A. C, Elliott, J. I., and Greengard, P. (1990) Synthetic peptide analogs of DARPP−32 (Mr 32,000 dopamine and cAMP-regulated phosphoprotein), an inhibitor of protein phosphatase-1. Phosphorylation, dephosphorylation, and inhibitory activity. J. Biol. Chem 265, 20,369–20,376PubMedGoogle Scholar
  21. Iwata, S.-I., Hewlett, G. H. K., Ferrell, S. T., Czernik, A. J., Meiri, K. F., and Gnegy, M. E. (1996) Increased in vivo phosphorylation state of neuromoduim and synapsin I in striatum from rats treated with repeated amphetamine j Pharmacol Exp Therap 278, 1428–1434Google Scholar
  22. Jovanovic, J N., Benfenati, F., Siow, Y. L., Sihra, T. S, Sanghera, J. S, Pelech, S. L., Greengard, P., and Czernik, A. J. (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions Proc Natl Acad.Sci USA 93, 3679–3683.PubMedCrossRefGoogle Scholar
  23. Kemp, B. E and Pearson, R B. (1990) Protein kinase recognition sequence motifs. Trends Biochem Sci 15, 342–346PubMedCrossRefGoogle Scholar
  24. Kennelly, P. J. and Krebs, E G. (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol Chem. 266, 15,555–15,558.PubMedGoogle Scholar
  25. Kosik, K. S., Duffy, L. K., Dowling, M M., Abraham, C., McCluskey, A, and Selkoe, D. J (1984) Microtubule-associated protein 2. monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles. Proc Natl Acad Sei USA 81, 7941–7942CrossRefGoogle Scholar
  26. Kwon, Y.-G, Lee, S-Y., Choi, Y, Nairn, A. C, and Greengard, P (1997) Cell cycle-dependent regulation of mammalian protein phoshatase by threonme-230 phosphorylation. (Submitted for publication).Google Scholar
  27. Lee, V. M., Carden, M. J., Schlaepfer, W. W., and Trojanowski, J. Q (1987) Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats. J Neurosci. 7, 3474–3488.PubMedGoogle Scholar
  28. Lee, V. M.-Y., Balin, B. J., Otvos, L., and Trojanowski, J. Q (1991) A68 a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251, 675–678PubMedCrossRefGoogle Scholar
  29. Lemer, R. A. (1982) Tapping the immunological repertoire to produce antibodies of predetermined specificity Nature (London) 299, 593–596.Google Scholar
  30. Li, L, Chin, L-S., Shupliakov, O., Brodin, L, Sihra, T. S., Hvalby, ∅, Jensen, V., Zheng, D., McNamara, J. O., Greengard, P., and Andersen, P. (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin Ideficient mice. Proc Natl Acad Sci USA 92, 9235–9239PubMedCrossRefGoogle Scholar
  31. Lichtenberg-Kraag, B., Mandelkow, E-M., Biernat, J., Steiner, B, Schroter, C., Gustke, N., Meyer, H. E., and Mandelkow, E. (1992) Phosphorylation-dependent epitopes of neurofilament antibodies on tau protein and relationship with Alzheimer tau. Proc Nati Acad Sci USA 89, 5384–5388.CrossRefGoogle Scholar
  32. Luca, F. C., Bloom, G. S., and Vallee, R. B. (1986) A monoclonal antibody that crossreacts with phosphorylated epitopes on two microtubule-associated proteins and two neurofilament polypeptides. Proc Natl. Acad Sci USA 83, 1006–1010PubMedCrossRefGoogle Scholar
  33. Marin, P., Nastiuk, K. L., Daniel, N., Girauit, J.-A., Czernik, A. J., Glowinski, J., Nairn, A. C., and Prémont, J. (1996) Glutamate dependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons, submitted for publication.Google Scholar
  34. Mathers, J C., Gharahdaghi, F., and Mische, S. M. (1994) FMOC solid phase synthesis of phosphopeptides, in Techniques in Protein Chemistry V (Crabb, J., ed.), Academic, San Diego, CA, pp. 477–484.Google Scholar
  35. Meiri, K. F., Bickerstaff, L. E., and Schwab, J. E. (1991) Monoclonal antibodies show that kmase C phosphorylation of GAP-43 during axonogenesis is both spatially and temporally restricted in vivo. I CellBiol 112, 991–1005.CrossRefGoogle Scholar
  36. Nairn, A. C., Detre, J. A, Casnellie, J. E., and Greengard, P. (1982) Serum antibodies that distinguish between the phospho-and dephospho forms of a phosphoprotein. Nature (London) 299, 734–736.CrossRefGoogle Scholar
  37. Nestler, E. J. and Greengard, P (1984) Protein Phosphorylation in the Nervous System, Wiley, NY, pp. 96–98; 284–285.Google Scholar
  38. Oishi, M, Nairn, A. C., Czernik, A. J., Lim, G. S., Isohara, T., Candy, S E., Greengard, P., and Suzuki, T. (1996) The cytoplasmic domain of the Alzheimer β-amyloid precursor protein is phosphorylated at Thr-654, Ser-655 and Thr-668 in adult rat brain and cultured cells. Mol. Med in press.Google Scholar
  39. Otvos, L., Jr., Feiner, L, Lang, E, Szendrei, G I., Goedert, M, and Lee, V. M-Y. (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at seine residues 396 and 404. J Neurosci Res 39, 669–673.PubMedCrossRefGoogle Scholar
  40. Patton, B. L., Molloy, S. S., and Kennedy, M. B. (1993) Autophosphorylation of type II CaM kinase in hippocampal neurons: localization of phospho and dephosphokinase with complementary phosphorylation sitespecific antibodies. Mel Biol Cell 4, 159–172Google Scholar
  41. Perich, J. W. and Johns, R. B. (1988) Di-tert-butyl N,N-diethylphosphoramidite. A new phosphitylating agent for the efficient phosphorylation of alcohols. Tetrahedron Lett. 29, 2369–2372.CrossRefGoogle Scholar
  42. Pieribone, V., Shupliakov, O., Brodin, L., Hilfiker-Rothenfluh, S., Czernik, A. J., and Greengard, P. (1995) Distinct pools of vesicles in neurotransmitter release. Nature (London) 375, 493–497CrossRefGoogle Scholar
  43. Riederer, B. M. (1995) Differential phosphorylation of MAPlb during postnatal development of the cat brain. J. Neurocytol 24, 45–54.PubMedCrossRefGoogle Scholar
  44. Ross, A. H., Baltimore, D., and Eisen, H. N. (1981) Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature (London) 294, 654–656.CrossRefGoogle Scholar
  45. Schlesinger, D. H., Buku, A., Wyssbrod, H. R., and Hay, D. I. (1987) Chemical synthesis of phosphoseryl-phosphoserine, a partial analogue of human salivary statherin, a protein inhibitor of calcium phosphate precipitation in human saliva. Int. J Pep. Protein Res. 30, 257–262.CrossRefGoogle Scholar
  46. Smith, S. C, McAdam, W. J., Kemp, B. E., Morgan, F. J., and Cotton, R. G H. (1987) A monoclonal antibody to the phosphorylated form of phenylalanine hydroxylase. Biochem J 244, 625–631.PubMedGoogle Scholar
  47. Snyder, G. L., Girault, J.-A., Chen, J. Y. C., Czernik, A. J., Kebabian, J. W., Nathanson, J A, and Greengard, P. (1992) Phosphorylation of DARPP-32 and protein phosphatase inhibitor-l: regulation by factors other than dopamine. J.Neurosci 12, 3071–3083PubMedGoogle Scholar
  48. Sternberger, L A and Sternberger, N. H. (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ Proc Natl. Acad. Sci USA 80, 6126–6130.CrossRefGoogle Scholar
  49. Sutcliffe, J. G., Shinnick,T. M., Green, N, and Lerner, R. A (1983) Antibodies that react with predetermined sites on proteins. Science 219, 660–666.PubMedCrossRefGoogle Scholar
  50. Suzuki, T., Oishi, M, Marshak, D. R., Czernik, A. J., Nairn, A. C., and Greengard, P (1994) Cell cycle-dependent regulation of the phosphorylation and metabolism of the Alzhelmer amyloid precursor protein. EMBO J 13, 1114–1122.PubMedGoogle Scholar
  51. Suzuki, T., Okumura-Noji, K., Ogura, A., Kudo, Y., and Tanaka, R. (1992) Antibody specific for the Thr-286-autophosphorylated α subunit of Ca2+/calmodulin-dependent protein kinase II. Proc Nat1 Acad SCi.-USA 89, 109–113.CrossRefGoogle Scholar
  52. Walter, G. (1986) Production and use of antibodies against synthetic peptides. J. lmmunol Methods, 88, 149–161.CrossRefGoogle Scholar
  53. Westendorf, J. M, Rao, P. N., and Gerace, L(1994) Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc Nutl. Acud. Sei USA 91, 714–718.CrossRefGoogle Scholar
  54. Yamagata, Y., Obata, K., Greengard, P, and Czernik, A. J. (1995) Increase in synapsin I phosphorylation implicates a presynaptic component in septal kindling. Neuroscience 64, 1–4.PubMedCrossRefGoogle Scholar
  55. Yano, T., Taura, C., Shibata, M., Hirono, Y., Ando, S., Kusubata, M, Takahashi, T, and Inagaki, M. (1991) A monoclonal antibody to the phosphorylated form of glial fibrrllary acidic protein. application to a non-radioactive method for measuring protein kinase activities. Biochem. Biophys Res. Commun 175, 1144–1151.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Andrew J. Czernik
    • 1
  • Jeffrey Mathers
    • 2
  • Sheenah M. Mische
    • 2
  1. 1.Laboratory ofMolecular and Cellular NeuroscienceThe Rockefeller UniversityNew York
  2. 2.The Protein/DNA Technology CenterThe Rockqfeller UniversityNew YorkNY

Personalised recommendations