Skip to main content

Enzyme Biosensors Based on Electron Transfer Between Electrode and Immobilized Peroxidases

  • Protocol
Book cover Enzyme and Microbial Biosensors

Part of the book series: Methods in Biotechnology ((MIBT,volume 6))

Abstract

Peroxidases are widely spread in nature and are classified as oxidoreductases E.C.l.11.1.X, where X is determined by a biologic reducer. Hemecontaining peroxidases are divided into two superfamilies, viz., plant and mammalian (see Table 1). The latter includes myeloperoxidase, lactoperoxidase, thyroid peroxidase, and prostaglandin H synthetase. The superfamily of plant peroxidases consists of yeast cytochrome c peroxidase (CCP), plant ascorbate peroxidases, fungal peroxrdases, and classic plant peroxrdases (1). Plant enzymes in general are more stable than others, and among them horseradish peroxrdase (HRP) is the most commonly used in practical analytical applications.

Table 1 Some Physicochemical Properties of Heme-Containing Peroxidases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welinder, K. G. (1992) Superfamily of plant, fungal and bacterial peroxtdases. Curr. Opin. Struc Biol 2, 388–393.

    CAS  Google Scholar 

  2. Finzel, B. C., Poulos, T. L., and Kraut, J. (1984) Crystal structure of yeast cytochrome c peroxidase refined at 1.7. Â resolution. J. Biol. Chem 259, 13,027–13,036

    PubMed  CAS  Google Scholar 

  3. Patterson, W. R. and Poulos, T. L. (1995) Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34, 4331–4341.

    PubMed  CAS  Google Scholar 

  4. Poulos, T. L., Edwards, S. L., Wariisht, H., and Gold, M. H. (1993) Crystallographic refinement of lignin peroxidase at 2 Â J Biol Chem. 268, 4429–4440.

    PubMed  CAS  Google Scholar 

  5. Sundaramoorthy, M., Klshi, K, Gold, M. H., and Poulos, T. L (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06 A resolution). J Biol. Chem. 269, 32,759–32,7

    PubMed  CAS  Google Scholar 

  6. Petersen, J. F. W., Kadziola, A., and Larsen, S. (1994) Three-dimensional structure of a recombinant peroxrdase from Coprinus cmereus at 2.6 A resolution. FEBS Letts. 339, 291–296

    CAS  Google Scholar 

  7. Kunishima, N., Fukuyama, K, Matsubara, H., Hatanaka, H., Shibano, Y., and Amachi, T. (1994) Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. structural comparisons with the lignin and cytochrome c peroxidases. J Mol Biol 235, 331–344.

    PubMed  CAS  Google Scholar 

  8. Schuler, D. J., Ban, N., van Huystee, R. B., McPherson, A., and Poulos, T. L. (1996) The crystal structure of peanut peroxidase Structure 4, 311–321

    Google Scholar 

  9. Henriksen, A., Svensson, L. A, Smith, A T., Burke, J. E., Thorneley, R N F, Welmder, K G., and Garhede, M (1993) Crystallographtc studies of peroxidases from horseradish and barley, in Plant Peroxtdases · Bcochemcstry and Physiology (Welinder, K. G., Rasmussen, S. K., Penel, C., and Greppin, H., eds.), Geneva University, Geneva, pp 5–8.

    Google Scholar 

  10. Dunford, H. B. (1991) Horseradish peroxidase: structure and kinetic properties, in Peroxidases in Chemistry and Biology (Everse, J., Everse, K. E., and Grisham, M. B., eds.), CRC, Boca Raton, FL, pp. 1–23.

    Google Scholar 

  11. Erman, J. E., Vitello, L B., Mauro, J. M., and Kraut, J. (1989) Detection of an oxyferryl porphyrm p-cation-radical intermediate in the reaction between hydrogen peroxide and a mutant yeast cytochrome c peroxidase. evidence for tryptophan-191 involvement in the radical site of Compound I. Bzochemistry 28, 7992–7995

    CAS  Google Scholar 

  12. Gazaryan, I. G. and Lagrimim, L. M. (1996) Anionic tobacco peroxidase overexpressed in transgenic plants. I. Purificatton and unusual kinetic properties Phytochemistry 41, 1029–1034.

    PubMed  CAS  Google Scholar 

  13. Dunford, H. B and Adeniran, A. J. (1986) Hammett correlation for reactions of horseradrsh peroxtdase Compound II with phenols. Arch Biochem Biophys. 251, 536–542.

    PubMed  CAS  Google Scholar 

  14. Newmyer, S. L. and Ortiz de Montellano, P. R. (1995) Horseradish peroxidase His420Ala, His420Val and Phe410Ala mutants. Histidme catalysis and control of substrate access to the heme iron, J. Biol. Chem. 270, 19,430–19,438.

    PubMed  CAS  Google Scholar 

  15. Gazaryan, I. G., Doseeva, V. V., Galkin, A. G., and Tishkov, V. I. (1994) Effect of single-point mutations Phe41His and Phe143Glu on folding and catalytic properties of recombinant horseradish peroxidase expressed in E coli. FEBS Letts 354, 248–250.

    CAS  Google Scholar 

  16. Smith, A. T., Sanders, S. A., Thorneley, R. N F., Burke, J F., and Bray, R. C (1992) Characterization of a haem active-site mutant of horseradish peroxidase, Phe4l Va1, with altered reactivity towards hydrogen peroxide and reducing substrates. Eur J Biol. Chem. 207, 507–519.

    CAS  Google Scholar 

  17. Harvey, P. J. and Candelas, L. P. (1995) Radical cation cofactors in hgnm peroxidase catalysis. Biochem. Sot Transactions 23, 262–267

    CAS  Google Scholar 

  18. Yaropolov, A. I., Tarasevich, M. R., and Varfolomeev, S. D. (1978) Electrochemical properties of peroxidase. Bioelectrochem Bioenerg. 5, 18–24.

    CAS  Google Scholar 

  19. Razumas, V., Jasaitis, J., and Kulys, J. (1984) Electrocatalysls on enzyme-modlfied carbon materials. Bioelectrochem. Bzoenerg. 12, 297–322.

    CAS  Google Scholar 

  20. Kulys, J. and Samalms, A. (1984) Dependence of the efficiency of bioelectrocatalytic processes on the electrode surface state. Bioelectrochem. Bioenerg 13, 163–169

    CAS  Google Scholar 

  21. Bogdanovskaya, V. A, Tarasevich, M. R., Hmtsche, R., and Scheller, F (1988) Electrochemical transformations of proteins adsorbed at carbon electrodes. Bioelectrochem. Bioenerg. 19, 581–584.

    CAS  Google Scholar 

  22. Jonsson, G. and Gorton, L(1989) An electrochemical sensor for hydrogen peroxide based on peroxide adsorbed on a spectrographic graphite electrode Electroanalysis 1, 465–468.

    Google Scholar 

  23. Csoregl, E., Jonsson-Pettersson, G., and Gorton, L. (1993) Mediatorless electrocatalytic reduction of hydrogen peroxide at graphite electrodes chemically modlfied with peroxidases. J. Biotechnol 30, 315–337.

    Google Scholar 

  24. Ho, W.O., Athey, D., McNeil, C.J., Hager, H J., Evans, G P, and Mullen, W. H (1993) Mediatorless horseradish peroxidase enzyme electrodes based on activated carbon, potential application to specific binding assay. J Electroanal. Chem 351, 185–197

    CAS  Google Scholar 

  25. Bogdanovskaya, V. A., Khorozova, E., Vorob’ev, V. G., Tarasevlch, M. R, and Shterev, G I. (1990) Enzymatic and electrochemical reactions involving peroxldase. Elektrokhlmlya 26, 573–579

    CAS  Google Scholar 

  26. Bogdanovskaya, V. A. (1993) Bioelectrocatalysls. problems and prospects Elektrokhzmlya 29, 441–447

    CAS  Google Scholar 

  27. Bogdanovskaya, V. A., Fridman, V. A., Tarasevich, M. R., and Scheller, F (1994) Bioelectrocatalysis by lmmobllized peroxldase· the reaction mechanism and the possibility of electrochemical detection of both inhibitors and activators of enzyme. Anal Lett. 27, 2823–2847.

    CAS  Google Scholar 

  28. Yaropolov, A, I., Cherednikova, T V., Emréus, J, Marko-Varga, G, and Gorton, L (1995) Investigation of the electrochemical properties of horseradish peroxldase adsorbed on solid graphite in the presence of monoclonal antibodies against the enzyme Bioelectrochem Bioenerg 38, 401404

    Google Scholar 

  29. Gorton, L, Bremle, G, Csdregi, E., Jonsson-Pettersson, G., and Persson, B. (1991) Amperometnc glucose sensors based on immobilized glucose-oxidlzmg enzymes and chemically modified electrodes Anal Chim Acta 249, 43–54

    CAS  Google Scholar 

  30. Gorton, L., Jonsson-Pettersson, G., Csoregi, E., Johansson, K., Dominguez, E., and Marko-Varga, G. (1992) Amperometric biosensor based on an apparent direct electron transfer between electrodes and immobilized peroxtdases. Analyst 117, 1235–1241.

    CAS  Google Scholar 

  31. Csdregi, E., Gorton, L., and Marko-Varga, G. (1993) Carbon tibres as electrode materials for the construction of peroxidase-modrfied amperometric biosensors. Anal. Chim. Acta 273, 59–70.

    Google Scholar 

  32. Zhao, J., Henkens, R. W., Stonehuemer, J, O’Daly, J P., and Crumbliss, A. L. (1992) Direct electron transfer at horseradish peroxidase-colloidal gold moditied electrodes. J. Electroanal Chem. 327, 109–119

    CAS  Google Scholar 

  33. Razumas, V., Gudavicius, A., and Kulys, J. (1983) Redox conversion of peroxidase on surface-modified gold electrode. J Electroanal Chem. 151, 311–315

    CAS  Google Scholar 

  34. Razumas, V., Gudavicms, A., and Kulys, J. (1986) Kinetics of peroxidase redox conversion on vrologen-modified gold electrodes. J Electroanal. Chem. 198, 81–87

    CAS  Google Scholar 

  35. Durliat, H., Courterx, A., and Comtat, M. (1989) Reactions of horseradish peroxidase on a platinum cathode. Bioelectrochem. Bioenerg. 22, 197–209

    CAS  Google Scholar 

  36. Adeyoju, O., Jwuoha, E. I., and Smyth, M. R. (1994) Amperometric determmation of butanone peroxide and hydroxylamine via direct electron transfer at a horseradish peroxtdase-modified platmum electrode. Anal Proc 31, 177–179

    Google Scholar 

  37. Comtat, M. and Durhat, H. (1994) Some examples of the use of thm layer spectroelectrochemistry in the study of electron transfer between metals and enzymes. Biosens. Bioelectron. 9, 663–668.

    CAS  Google Scholar 

  38. Cosgrove, M., Moody, G. J., and Thomas, J. D. R. (1988) Chemtcally nnmobilrsed enzyme electrodes for hydrogen peroxide determination. Analyst 113, 1811–1815.

    CAS  Google Scholar 

  39. Wollenberger, U., Bogdanovskaya, V., Bobrm, S, Scheller, F., and Tarasevich, M. (1990) Enzyme electrodes using bioelectrocatalytic reduction of hydrogen peroxide. Anal. Lett. 23, 1795–1808.

    CAS  Google Scholar 

  40. Dominguez-Sánchez, P, Tunón-Blanco, P., Femández-Alvarez, J M., Smyth, M R., and O’Kennedy, R. (1990) FlOW-injectionanalysis of hydrogen peroxide using a horseradish peroxidase-modified electrode detection system. Electroanalysis 2, 303–308.

    Google Scholar 

  41. Armstrong, F. A., Bond, A. M., Buchi, F. N., Hamnett, A., Hill, H. A. O., Lannon, A. M., Lettington, O. C., and Zoski, C. G. (1993) Electrocatalytrc reduction of hydrogen peroxide at a stationary pyrolytic graphite electrode surface in the presence of cytochrome c peroxidase: a description based on a microelectrode array model for adsorbed enzyme molecules. Analyst 118, 973–978.

    PubMed  CAS  Google Scholar 

  42. McCreery, R. L (1991) Carbon electrodes: structural effects on electron transfer kinetrcs, in Electroanalytical Chemrstry (Bard, A. J., ed.), Marcel Dekker, New York, pp. 221–374.

    Google Scholar 

  43. Kulys, J. and Schmid, R. D. (1990) Mediatorless peroxtdase electrode and preparation of bienzyme sensors. Bielectrochem Bioenerg. 24, 305–311.

    CAS  Google Scholar 

  44. Johansson, E., Marko-Varga, G., and Gorton, L. (1993) Study of a reagent-and mediatorless biosensor for d-ammo acids based on co-immobihzed d-amino acid oxidase and peroxidase in carbon paste electrodes. J, Biomater Appl. 8, 146–173.

    CAS  Google Scholar 

  45. Ruzgas, T., Gorton, L., Emneus, J., Csoregi, E, and Marko-Varga, G. (1995) Direct bioelectrocatalytic reduction of hydrogen peroxide at chloroperoxidase modified graphite electrode. Anal. Proc. 32, 207,208.

    CAS  Google Scholar 

  46. Lindgren, A. (1995) Development of a peroxidase based biosensor for deterrmination of phenolic compounds. Master Thesis, Lund University, Lund, Sweden.

    Google Scholar 

  47. Mondal, M. S., Fuller, H. A., and Armstrong, F. A. (1996) Direct measurement of the reduction potential of catalytically active cytochrome c peroxidase compound I: voltammetric detection of a reversible, cooperative two-electron transfer reaction. J Am Chem Soc 118, 263,264.

    CAS  Google Scholar 

  48. Bartlett, P. N., Tebbutt, P., and Whitaker, R G. (1991) Kinetic aspects of the use of modified electrodes and mediators in bioelectrochemistry. Prog. React Kinet. 16, 55–155.

    CAS  Google Scholar 

  49. Epton, R., Hobson, M. E., and Marr, G. (1978) Oxidation of ferrocene and some substituted ferrocenes in the presence of horseradish peroxidase. J Organomet. Chem. 149, 231–244.

    CAS  Google Scholar 

  50. Tatsuma, T, Okawa, Y., and Watanabe, T. (1989) Enzyme monolayer-and bilayer-modified tin oxide electrodes for the determination of hydrogen peroxide and glucose Anal Chem 61, 2352–2355

    CAS  Google Scholar 

  51. Smit, M H. and Cass, A. E. G. (1990) Cyanide detection using a substrateregenerating, peroxidase-based biosensor. Anal Chem 62, 2429–2436.

    PubMed  CAS  Google Scholar 

  52. Schubert, F., Saini, S, Turner, A. P. F, and Scheller, F (1992) Organic phase enzyme electrodes for the determination of hydrogen peroxide and phenol. Sens Actuators B7, 408–411.

    CAS  Google Scholar 

  53. Tsai, W.-C. and Cass, A. E. G. (1995) Ferrocene-modified horseradish peroxidase enzyme electrodes a kinetic study on reactions with peroxide and linoleic hydroperoxide. Analyst 120, 2249–2254.

    CAS  Google Scholar 

  54. Cooper, J. M., Alvarez-Icaza, M., McNeil, C. J, and Bartlett, P. N. (1989) A kmetic study of an amperometric enzyme electrode based on immobihzed cytochrome c peroxidase J. Electroanal. Chem. 272, 57–70

    CAS  Google Scholar 

  55. Cooper, J. M, Bannister, J. V., and McNeil, C. J (1991) A kinetic study of the catalysed oxidation of 1,3-dimethylferrocene ethylamine by cytochrome c peroxidase. J Electroanal Chem 312, 155–163.

    CAS  Google Scholar 

  56. Dominguez-Sanchez, P., Miranda-Ordieres, A. J., Costa-Garcia, A., and Tunon-Blanco, P. (1991) Peroxidase-ferrocene modified carbon paste electrode as an amperometric sensor for the hydrogen peroxide assay. Electroanalysis 3, 281–285.

    CAS  Google Scholar 

  57. Wang, J., Reviejo, A. J., and Angnes, L. (1993) Graphrte-Teflon enzyme electrode. Electroanalysis 5, 575–579.

    CAS  Google Scholar 

  58. Kulys, J. and Vidzmnaite, R (1983) The development of high sensitive enzyme electrodes for the determination of aromatic ammes Anal Lett 16, 197–207

    CAS  Google Scholar 

  59. Scott, D. L., Paddock, R. M, and Bowden, E. F (1992) The electrocatalytic enzyme function of adsorbed cytochrome c peroxidase on pyrolytic graphite. J Electroanal. Chem. 341, 307–321

    CAS  Google Scholar 

  60. Kulys, J., Pesliaktene, M., and Samalms, A. (1981) The development of bienzyme glucose electrodes. Bioelectrochem. Bioenerg 8, 81–88

    CAS  Google Scholar 

  61. Wang, J. and Varughese, K. (1990) Polishable and robust biological electrode surfaces. Anal. Chem 62, 318–320

    PubMed  CAS  Google Scholar 

  62. Vreeke, M., Maidan, R., and Heller, A. (1992) Hydrogen peroxide and l3-nicotinamide adenine dmucleotide sensing amperometric electrodes based on electrical connection of horseradish peroxidase redox centers to electrodes through a three-dimensional electron relaying polymer network. Anal. Chem. 64, 3084–3090.

    CAS  Google Scholar 

  63. Ohara, T. J., Vreeke, M. S., Battaglini, F., and Heller, A. (1993) Bienzyme sensors based on electrically wired peroxidase. Electroanalysrs 5, 825–831.

    CAS  Google Scholar 

  64. Garguilo, M. G., Huynh, N., Proctor, A., and Michael, A C (1993) Amperometric sensors for peroxide, choline, and acetylcholine based on electron transfer between horseradish peroxidase and a redox polymer. Anal Chem 65, 523–528.

    PubMed  CAS  Google Scholar 

  65. Liu, H., Qian, J., Liu, Y., Yu, T., and Deng, J. (1995) Nickelocene-mediating sensor for hydrogen peroxide based on bioelectrocatalytic reduction of hydrogen peroxide. Anal. Proc 32, 475–477.

    CAS  Google Scholar 

  66. AdeyoJu, O., Iwuoha, E I, and Smyth, M. R. (1995) Kinetic characterization of the effects of organic solvents on the performance of a peroxidase-modified electrode in detecting peroxides, Thiourea and Ethylenethiourea. Electroanalysis 7, 924–929.

    CAS  Google Scholar 

  67. Wang, J. and Lm, M. S. (1989) Horseradish-root-modified carbon paste bioelectrode. Electroanalysis 1, 43–48.

    CAS  Google Scholar 

  68. Pantano, P., Morton, T. H., and Kuhr, W. G. (1991) Enzyme-modified carbonfiber microelectrodes with millisecond response times J Am Chem Soc 113, 1832–1833.

    CAS  Google Scholar 

  69. Yang, X, Guilbault, G. G., and Suleiman, A. A. (1997) New dissolved mediator for immobilized horseradish peroxidase electrode. Talanta, in press

    Google Scholar 

  70. Lei, C. and Deng, J. (1996) Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovine serum albumin-glutaraldehyde matrix on a glassy carbon electrode surface. Anal. Chem. 68, 3344–3349.

    PubMed  CAS  Google Scholar 

  71. Liu, Y., Liu, H., Qian, J., Deng, J., and Yu, T. (1995) Regenerated silk fibroin membrane as immobilization matrix for peroxidase and fabrication of a sensor for hydrogen peroxide utilizing methylene blue as electron shuttle. Anal Chim Acta. 316, 65–72.

    CAS  Google Scholar 

  72. Kulys, J., Samalius, A., and Svirnnckas, G.-J. (1980) Electron exchange between the enzyme active center and organic metal. FEBS Lett. 114, 7–10.

    PubMed  CAS  Google Scholar 

  73. Korell, U. and Spichiger, U. E. (1994) Novel membraneless amperometric peroxide biosensor based on a tetrathiafulvalene-p-tetracyanoquinodimethane electrode.Anal. Chem. 66, 510–515.

    CAS  Google Scholar 

  74. Bifnlco, L., Cammaroto, C., Newman, J. D., and Turner, A. P. F. (1994) TTF-modified biosensors for hydrogen peroxide. Anal. Lett. 27, 1443–1452.

    Google Scholar 

  75. Tatsuma, T., Gondaira, M., and Watanabe, T. (1992) Peroxidase-incorporated polypyrrole membrane electrodes. Anal. Chem. 64, 1183–1187.

    CAS  Google Scholar 

  76. Horrocks, B. R., Schmidtke, D., Heller, A., and Bard, A. J. (1993) Scanning electrochemical microscopy. Enzyme ultramtcroelectrodes for the measurement of hydrogen peroxide at surfaces. Anal. Chem 65, 3605–3614.

    PubMed  CAS  Google Scholar 

  77. Yang, L., Janle, E., Huang, T., Gitzen, J., Kissinger, P. T., Vreeke, M., and Heller, A. (1995) Application of “wired” peroxidase electrodes for peroxide determination in liquid chromatography coupled to oxidase immobilized enzyme reactors Anal Chem 67, 1326–1331.

    CAS  Google Scholar 

  78. Anm, H and Yonetani, T. (1992) Mechanism of action of peroxidases, in Degradation of Enwonmental Pollutants by Mcroorganlsms and Thew Metaloenzymes (Siegel, H. and Siegel, A., eds.), Marcel Dekker, New York, pp. 219–241.

    Google Scholar 

  79. Marklund, S. (1971) Hydroxymethylhydroperoxide as inhibitor and peroxtdase substrate of horseradish peroxidase. Eur. J. Biochem. 21, 348–354

    PubMed  CAS  Google Scholar 

  80. Mulchandani, A., Wang, C-L., and Weetall, H H. (1995) Amperometric detection of peroxides with poly(amhnomethylferrocene)-modtfied enzyme electrodes Anal Chem 67, 94–100.

    CAS  Google Scholar 

  81. Csoregi, E., Gorton, L., Marko-Varga, G., Tudos, A. J., and Kok, W. T. (1994) Peroxidase-modified carbon fiber mtcroelectrodes in flow-through detection of hydrogen peroxide and organic peroxides. Anal Chem. 66, 3604–3610.

    Google Scholar 

  82. Popescu, I. C, Csoregi, E., and Gorton, L. (1996) Peroxtdase-modified carbon paste microelectrode as amperometric & detector for peroxides in partial aqueous media. Electroanalysis 8, 1014–1019

    CAS  Google Scholar 

  83. Klibanov, A. M. (1989) Enzymatic catalysis in anhydrous organic solvents. Trends Biochem Sci 14, 141–144.

    PubMed  CAS  Google Scholar 

  84. Wang, J. (1993) Orgamc-phase btosensors-new tools for flow analysis: a short review. Talanta 40, 1905–1909

    PubMed  CAS  Google Scholar 

  85. Yang, L. and Murray, R. W. (1994) Spectrophotometric and electrochemical kinetic studies of poly(ethylene glycol)-modified horseradish peroxidase reactions in organic solvents and aqueous buffer. Anal. Chem 66, 2710–2718.

    CAS  Google Scholar 

  86. Wang, C.-L. and Mulchandam, A. (1995) Ferrocene-comugated polyamlmemodified enzyme electrodes for detection of peroxides in organic media. Anal Chem 67, 1109–1114.

    CAS  Google Scholar 

  87. Wang, J., Freiha, B., Naser, N., Gonzalez-Romero, E., Wollenberger, U., Ozsoz, M., and Evans, O (1991) Amperometrtc biosensmg of organic peroxides with peroxidase-modified electrodes. Anal Chim Acta 254, 81–88.

    CAS  Google Scholar 

  88. Wang, J., Wu, L-H, and Angnes, L. (1991) Organic-phase enzymatic assays with ultramtcroelectrodes. Anal Chem. 63, 2993,2994.

    Google Scholar 

  89. Schubert, F., Saini, S, Turner, R S, and A P F (1991) Mediated amperometric enzyme electrode incorporating peroxidase for the determination of hydrogen peroxide in organic solvents. Anal. Chim. Acta 245, 133–138.

    CAS  Google Scholar 

  90. Lm, Y., Liu, H., Qian, J., Deng, J., and Yu, T. (1995) Feature of an amperometnc ferrocyanide-mediated H2O2 sensor for organic-phase assay based on regenerated silk fibroin as nnmobihzation matrtx for peroxidase Electrochzm Acta 41, 77–82

    Google Scholar 

  91. Ruzgas, T., Gorton, L., Emnkus, J., and Marko-Varga, G. (1995) Kinetic models of horseradish peroxldase action on a graphite electrode J Electroanal. Chem 391, 41–49.

    Google Scholar 

  92. Gazaryan, I. G., Loginov, D. B., Lialulm, A. L, and Shekhovtsova, T. N. (1994) Determination of phenols using various peroxidases. Anal Lett 27, 2917–2930.

    CAS  Google Scholar 

  93. Courteix, A. and Bergel, A (1995) Horseradish peroxidase catalyzed hydroxylation of phenol: il. kinetic model. Enzyme Microb Technol 17, 1094–1100

    CAS  Google Scholar 

  94. Courteix, A. and Bergel, A. (1995) Horseradtsh peroxldase-catalyzed hydroxyiation of phenol: I. thermodynamic analysis. Enzyme Microb Technol. 17, 1087–1093.

    CAS  Google Scholar 

  95. Marko-Varga, G., Emnéus, J., Gorton, L, and Ruzgas, T. (1995) Development of enzyme-based amperometnc sensors for the determination of phenohc compounds. Trends Anal. Chem 14, 319–328

    CAS  Google Scholar 

  96. Gorton, L. (1995) Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanalysis 7, 23–45.

    CAS  Google Scholar 

  97. Maidan, R. and Heller, A. (1992) Elimmatlon of electrooxldizable interferant-produced currents in amperometric biosensors. Anal Chem 64, 2889–2896

    PubMed  CAS  Google Scholar 

  98. Vijayakumar, A. R, Csoregl, E., Heller, A., and Gorton, L. (1996) Development of an alcohol blosensor based on various coupled oxldase-peroxldase systems Anal. Chim. Acta 327, 223–234.

    CAS  Google Scholar 

  99. Boguslavsky, L., Kalash, H., Xu, Z., Beckles, D., Geng, L., Skotheim, T, Laurmavicms, V., and Lee, H. S. (1995) Thin film blenzyme amperometric biosensors based on polymeric redox mediators with electrostatic bipolar protecting layer. Anal. Chim Acta 311, 15–21.

    CAS  Google Scholar 

  100. Marcmkeviciene, J. and Kulys, J. (1993) Bienzyme strip-type glucose sensor. Biosens. Bioelectron. 8, 209–212.

    Google Scholar 

  101. Scheller, F. W., Schubert, F., Neumann, B., Pfeiffer, D., Hmtsche, R., Dransfeld, I., Wollenberger, U., Renneberg, R., Warsinke, A., Johansson, G., Skoog, M., Yang, X., Bogdanovskaya, V., Buckmann, A., and Zaitsev, S. Y. (1991) Second generation blosensors. Biosens. Bioelectron. 6, 245–253.

    PubMed  CAS  Google Scholar 

  102. Buttler, T., Johansson, K., Gorton, L., and Marko-Varga, G. (1993) On-line fermentation process monitoring of carbohydrates and ethanol using tangential flow filtration and column liquid chromatography. Anal Chem. 65, 2628–2636.

    CAS  Google Scholar 

  103. Johansson, K., Jonsson-Petterson, G., Gorton, L., Marko-Varga, G., and Csdregi, E. (1993) A reagentless amperometric biosensor for alcohol detection in column liquid chromatography based co-immobilized peroxldase and alcohol oxidase in carbon paste J Biotechnol. 31, 301–316.

    PubMed  CAS  Google Scholar 

  104. Marko-Varga, G., Johansson, K., and Gorton, L. (1994) Enzyme-based blosensor as a selective detection unit in column liquid chromatography. J. Chromatogr. A660, 153–167.

    Google Scholar 

  105. Gibson, T. D., Hulbert, J. N., Parker, S. M., Woodward, J. R., and Higgins, I. J. (1992) Extended shelf life of enzyme-based biosensors using a novel stabllization system. Biosens Bioelectron. 7, 701–708.

    CAS  Google Scholar 

  106. Spohn, U., Narasaiah, D., Gorton, L., and Pfeiffer, D. (1996) A btenzyme carbon paste electrode for the amperometric detection of l-lactate at low potentials. Anal. Chem. Acta 319, 79–90

    CAS  Google Scholar 

  107. Spohn, U, Narasaiah, D., and Gorton, L. (1996) The influence of the carbon paste composition on the performance of an amperometrtc bienzyme sensor for L-lactate. Electroanalysis 8, 507–514

    CAS  Google Scholar 

  108. Spohn, U., Narasaiah, D., and Gorton, L. (1997) Reagentless l-lactate sensors based on carbon paste electrodes modified with different lactate oxidases and peroxidases. J Prakt. Chem. 339, 607–614.

    CAS  Google Scholar 

  109. Narasaiah, D., Spohn, U., and Gorton, L. (1996) Simultaneous determmation of d-and L-lactate by enzyme modified carbon paste electrodes. Anal Lett 29, 181–201.

    CAS  Google Scholar 

  110. Kacanikhc, V., Johansson, K., Marko-Varga, G., Gorton, L., Jonsson-Pettersson, G., and Csoregi, E (1994) Amperometric biosensors for detection of l-and d-amino acids based on co-immobilized peroxidase and l-and d-amino acid oxidases in carbon paste electrodes. Electroanalysis 6, 381–390.

    Google Scholar 

  111. Kulys, J., Laurmavicms, V., Pesliakiene, M, and Gureviciene, V (1983) The determmation of glucose, hypoxanthine and uric acid with use of bi-enzyme amperometrtc electrodes. Anal. Chim Acta 148, 13–18.

    CAS  Google Scholar 

  112. Crumbliss, A. L, Stonehuerner, J G, Henkens, R W, Zhoe, J, and O’Daly, J P. (1993) A carrageenan hydrogel stabilized colloidal gold multi-enzyme biosensor electrode utihzmg immobihzed horseradish peroxidase and cholesterol oxidase/cholesterol esterase to detect cholesterol in serum and whole blood. Biosens. Bioelectron. 8, 331–337.

    PubMed  CAS  Google Scholar 

  113. Yang, X. and Rechmtz, G. A. (1995) Duel enzyme amperometric biosensor for putrescine with interference suppression. Electroanalysis 7, 105–108.

    CAS  Google Scholar 

  114. Lm, M. S., Hare, M., and Rechnitz, G. A. (1992) Multienzyme contaming tissue-based and ferrocene-mediated bioelectrode for the determmation of polyamines Electroanalysu 4, 521–525.

    Google Scholar 

  115. Wang, J. and Ozsoz, M. (1990) A pohshable amperometric biosensor for bilirubin Electroanalysis 2, 647–650

    CAS  Google Scholar 

  116. Ghobadi, S., Csoregi, E., Gorton, L., and Marko-Varga, G (1996) Carbon paste electrodes based on co-immobilized peroxidase and l-glutamate oxidase for determinatton of l-glutamate. Current Separations 14, 94–102.

    CAS  Google Scholar 

  117. Liden, H., Buttler, T., Jeppsson, H., Volc, J., Marko-Varga, G., and Gorton, L. (1995) Two amperometric biosensors as liquid chmmatogmpmc detectors for on-line monitoring of carbohydrate consumption and ethanol production in bioprocesses. Proceedings of Transducer’s 9YEurosensors IX, June 2529, Stockholm, Sweden, pp. 474–477

    Google Scholar 

  118. Oungpipat, W. and Alexander, P W (1994) An amperometric bi-enzyme sensor for glycolic acid determination based on spinach tissue and ferrocene-medianon. Anal Chim Acta 295, 37–46

    CAS  Google Scholar 

  119. Frew, J. E., Harmer, M A., Hill, H. A. O., and Labor, S. I. (1986) A method for estimation of hydrogen peroxtde based on mediated electron transfer reactions of peroxtdases at electrodes. J Electroanal Chem 201, 1–10.

    CAS  Google Scholar 

  120. Vreeke, M. S., Yong, K. T., and Heller, A. (1995) A thermostable btosensor of hydrogen peroxtde. Anal. Chem 67, 4247–4249.

    CAS  Google Scholar 

  121. Hua, C., Walsh, S., Smyth, R., Svancara, I., and Vytras, K. (1992) Voltammetric behavior of dihydronicotmamide adenine dmucleottde phosphate at enzyme-modified electrodes Electroanalysis 4, 107–110

    CAS  Google Scholar 

  122. Hua, C, Smyth, M. R., and O'Fagain, C. (1991) Determination of glutathtone at enzyme-modified and unmodified glassy carbon electrodes. Analyst 116, 929–931.

    CAS  Google Scholar 

  123. Wrmg, S A. and Hart, J. P. (1992) Chemically modified, screen-printed carbon electrodes. Analyst 117, 1281–1286.

    Google Scholar 

  124. Wang, J., Ciszewski, A, and Naser, N. (1992) Strtppmg measurements of hydrogen peroxide based on biocatalytic accumulatton at mediatorless peroxidaselcarbon paste electrodes. Electroanalysis 4, 777–782

    CAS  Google Scholar 

  125. Gorton, L., Csoregi, E., Dominguez, E., Emneus, J., Jonsson-Pettersson, G., Marko-Varga, G., and Persson, B. (1991) Selective detection in flow analysis based on the combination of immobilized enzymes and chemically modified electrodes. Anal. Chim Acta 250, 203–248.

    CAS  Google Scholar 

  126. Kalcher, K., Kauffmann, J.-M., Wang, J., Svancara, I., Vytras, K., Neuhold, C., and Yang, Z (1995) Sensors based on carbon paste in electrochemical analysis: a review with particular emphasis on the period 1990–1993. Electroanalysis 7, 5–22.

    CAS  Google Scholar 

  127. Kulys, J., Gorton, L., Domínguez, E., Emnéus, J., and Jarskog, H. (1994) Electrochemical characterization of carbon pastes modified with proteins and polycations. J. Electroanal. Chem. 372, 49–55.

    CAS  Google Scholar 

  128. Popescu, I. C., Zetterberg, G., and Gorton, L. (1995) Influence of graphite powder, additives and enzyme immobilization procedures on a mediatorless hipniodified carbon paste electrode for amperometric flow-injection detection of H2O2, Biosens Bioelectron. 10, 443–461

    CAS  Google Scholar 

  129. Oungpipat, W., Alexander, P. W., and Southwell-Keely, P. (1995) A Reagentless amperometric biosensor for hydrogen peroxide determination based on asparagus tissue and ferrocene mediation. Anal Chim. Acta 309, 35–45

    CAS  Google Scholar 

  130. Chen, L., Lm, M S., Hara, M., and Rechnitz, G A. (1991) Kohlrabi-based amperometric biosensor for hydrogen peroxide measurement. Anal Lett 24, 1–14.

    CAS  Google Scholar 

  131. Everse, J., Everse, K. E., Grisham, M. B. (eds.) (1991) Peroxzduses in Chemutv and Biology, vols. 1 and 2, CRC, Boca Raton, FL.

    Google Scholar 

  132. Shinmen, Y., Asami, S., Amachi, T., Shimtzu, S., and Yamada, H. (1986) Crystallization and characterization of an extracellular fungal peroxidase. Agric Biol. Chem. 50, 247–249.

    CAS  Google Scholar 

  133. Sessa, D. J. and Anderson, R. L. (1981) Soybean peroxtdases: purification and some properties. J Agric. Food Chem 29, 960–965.

    CAS  Google Scholar 

  134. Gillikin, J. W and Graham, J. S. (1991) Purification and development analysis of the maJor anionic peroxidase from the seed coat of glycme max. Plant Physiol 96, 214–220.

    PubMed  CAS  Google Scholar 

  135. Polis, D and Shmukler, H. W. (1953) Crystalline lactoperoxidase J Biol Chem 201, 475–500.

    PubMed  CAS  Google Scholar 

  136. Lagrimini, L. M., Burkhart, W, Moyer, M., and Rothstem, S (1987) Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco molecular analysis and tissue-specific expression. Proc Natl. Acad Sci USA 84, 7542–7546.

    PubMed  CAS  Google Scholar 

  137. Takio, K, Titani, K, Ericsson, L. H., and Yonetani, T (1980) Primary structure of cytochrome c peroxidase The complete ammo acid sequence Arch Biochem Biophys 615, 615–629

    Google Scholar 

  138. Kulys, J., Bilitewski, U, and Schmid, R. D. (1991) The kmetics of stmultaneous conversion of hydrogen peroxide and aromatic compounds at peroxidase electrodes Bioelectrochem Bioenerg 26, 277–286.

    CAS  Google Scholar 

  139. Armstrong, F A and Lannon, A M (1987) Fast mterfacial electron transfer between cytochrome c peroxtdase and graphite electrodes promoted by aminoglycosides: novel electroenzymtc catalysis of H2O2 reduction J Am Chem Soc 109, 7211,7212

    CAS  Google Scholar 

  140. Vidal, J. C., Yague, M. A., and Castillo, J. R. (1994) A chronoamperometric sensor for hydrogen peroxide based on electron transfer between immobilized horseradish peroxidase on a glassy carbon electrode and a diffusmg ferrocene mediator Sens Actuators B 21, 135–141

    Google Scholar 

  141. Deng, Q and Dong, S. (1994) Mediatorless hydrogen peroxide electrode based on horseradish peroxidase entrapped in poly(o-phenylenediamme) J Electroanal. Chem. 377, 191–195.

    CAS  Google Scholar 

  142. Wollenberger, U., Wang, J., Ozsoz, M., Gonzalez-Romero, E., and Scheller, F (1991) Bulk modified enzyme electrodes for reagentless detection of peroxides Bioelectrochem. Bioenerg 26, 287–296.

    CAS  Google Scholar 

  143. Zulfikar, Hibbert, D B, and Alexander, P. W (1995) A tubular graphite-epoxy electrode incorporatmg horseradish peroxidase as a potentiometric sensor for hydrogen peroxide. Electroanalysis 7, 722,725

    Google Scholar 

  144. Navaratne, A. and Rechnitz, G A. (1992) Improved plant tissue-based biosensor using in vitro cultured tobacco callus tissue. Anal Chim Acta 257, 59–66

    CAS  Google Scholar 

  145. Ruzgas, T., Emntus, J., Gorton, L, and Marko-Varga, G. (1995) The development of a peroxtdase biosensor for monitoring phenol and related aromatic compounds. Anal Chim. Acta 311, 245–253.

    CAS  Google Scholar 

  146. Dommguez-Sanchez, P., O’sullivan, C. K, Miranda-Ordieres, A J, Tunon-Blanco, P., and Smyth, M R (1994) Flow InJection amperometric detection of aniline with a peroxidase modified carbon paste electrode. Anal. Chim. Acta 291, 349–356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Gorton, L., Csöregi, E., Ruzgas, T., Gazaryan, I., Marko-Varga, G. (1998). Enzyme Biosensors Based on Electron Transfer Between Electrode and Immobilized Peroxidases. In: Mulchandani, A., Rogers, K.R. (eds) Enzyme and Microbial Biosensors. Methods in Biotechnology, vol 6. Humana Press. https://doi.org/10.1385/0-89603-410-0:93

Download citation

  • DOI: https://doi.org/10.1385/0-89603-410-0:93

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-410-5

  • Online ISBN: 978-1-59259-484-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics