Skip to main content

Enzyme Biosensors Based on ISFETs

  • Protocol
Enzyme and Microbial Biosensors

Part of the book series: Methods in Biotechnology ((MIBT,volume 6))

Abstract

The ion-sensitive field-effect transistor (ISFET) can be regarded as a successful combination of two well developed techniques: solid-state integrated circuits and ion-sensitive electrodes. Bergeveld (1) introduced the ISFET as a new device that combines the chemical-sensitive properties of glass-membrane electrodes with the impedance-converting characteristics of the metal-oxidesemiconductor field-effect-transistor (MOSFET).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergveld, P. (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Eng BME 17, 70.

    Article  CAS  Google Scholar 

  2. Caras, S. and Janata, J. (1980) Field effect transistor sensitive to penicillin. Anal Chem 52, 1935–1937.

    Article  CAS  Google Scholar 

  3. Tsukuda, K., Sebata, M., Miyahara, Y, and Miyaga, H. (1989) Long-life multiple-ISFETs with polymeric gates Sens Actuators 18, 329

    Article  Google Scholar 

  4. Perrot, H., Jaffrezic-Renault, N., Clechet, P., Wlodarski, W. B., deRooij, R F, and van den Vlekkert, H. H (1990) A generalized theory of an Ag+ sensitive electrolyte-insulator-semiconductor field-effect transistor with silica surface modified by chemical grafting. Sens Actuators Bl, 380

    Google Scholar 

  5. van den Vlekkert, H. H. and de Rooij, N. F. (1990) Multi sensing system basedon glass-encapsulated pH-ISFETs and a pseudo-REFET. Sens Actuators B1, 395

    Google Scholar 

  6. Oesch, U., Caras, S., and Janata, J (1981) Field effect transistors sensitive to sodium and ammonium ion Anal Chem 53, 1983

    Google Scholar 

  7. Vlasov, Y. G and Tarantov, Y A (1989) Development of ISFET using glassy solid electrolytes Chem Sen. Techn. 3, 173–178.

    Google Scholar 

  8. Battilotti, M., Mercuri, R., Mazzamurro, I, Giannini, M, and Giongo, M (1990) Lead ion-sensitive membrane for ISFETs. Sens Actuators B1, 438

    CAS  Google Scholar 

  9. Salardenne, J., Morcos, J, Ait Alial, M., and Portier, J. (1990) New ISFET sensitive membrane Sens. Actuators B1, 385.

    CAS  Google Scholar 

  10. Nomura, T. and Nakagawa, G (1987) Alkali-free magnesium phoshate glasses as nitrate-ion selective materials for solid-state electrochemical sensors. Bull Chem Soc. Jpn. 57, 1491.

    Article  Google Scholar 

  11. Wakida, S, Yamane, M, and Higashi, K. (1990) Urushi-matrix sodium, calcium, potassium and chlorid-selektive field-effect transistors. Sens. Actuators B1, 412.

    CAS  Google Scholar 

  12. Vlasov, Y., Hacklemen, D E, and Buck, R. P. (1979) Fabrication of a silver, chloride and bromide-responsive ion selective field effect potentiometer sensors Anal. Chem 51, 1570

    Article  CAS  Google Scholar 

  13. Moritz, W, Meierhofer, I., and Muller, L. (1988) Fluoride-sensitive membrane for ISFETs. Sens Actuators 15, 211.

    Article  CAS  Google Scholar 

  14. Bergveld, P. (1972) Development of an ion-sensitive solid-state device for neurophysical measurements. IEEE Trans, Biomed Eng. 19, 342.

    Article  CAS  Google Scholar 

  15. Colclaser, R. A (1980) Microelectronics Processing and Device Design, Wiley, New York.

    Google Scholar 

  16. Vlasov, Y. (1991) Temperature coefficient of pH-sensitive ion-selective field-effect transistors. Mikrochim. Acta 2, 363.

    Article  CAS  Google Scholar 

  17. Bergveld, P and Sibbald, A. (1988) Analytical and Biomedical Applications of ISFETs, Elsevier, Amsterdam.

    Google Scholar 

  18. Blackburn, G. F. (1987) Biosensors—Fundamentals and Applications, Oxford University Press, New York.

    Google Scholar 

  19. Abe, H., Esashi, M., and Matsuo, M. (1979) A tantalum-on-sapphire microelectrode array. IEEE Trans. Electr. Dev. ED-26, 1939.

    Google Scholar 

  20. Esashi, M. and Matsuo, T. (1978) Integrated micro multi ion sensor using field effect of semiconductor. IEEE Trans. Biomed. Eng. BME-25, 184.

    Article  CAS  Google Scholar 

  21. Vlaslov, Y. G. and Bratov, A. V. (1987) A pH-sensitive ion-selective field-effect transistor based on zirconium dioxide film. Zh Prikl Khim 60, 755

    Google Scholar 

  22. Brand, U., Reinhardt, R., Ruther, F., Scheper, T, and Schugerl, K. (1990) Biofield-effect transistors as detectors in flow-injection analysis Anal Chim Acta 238, 201.

    Article  CAS  Google Scholar 

  23. Anzai, J., Furuya, K., Chen, C, Osa, T., and Matsuo, T (1987) Penicillin sensors based on an ion-sensitive field-effect transistors coated with stearic acid Langmuir-Blodgett membrane. Chem. Pharm. Bull. 35(2), 693.

    PubMed  CAS  Google Scholar 

  24. Brand, U, Scheper, T., and Schügerl, K. (1989) Penicillin G sensor based on penicillin amidase coupled to a field effect transistors Anal. Chim. Acta 226, 87

    Article  CAS  Google Scholar 

  25. Kullick, T., Ulber, R., Meyer, H. H., Scheper, T, and Schugerl, K. (1994) Biosensors based on enantioselective analysis. Anal Chim Acta. 293, 271

    Article  CAS  Google Scholar 

  26. Koneke, R., Menzel, C, Ulber, R., Saleemeiddin, M., and Scheper, T. (1996) Reversible coupling of glucoenzymes on fluoride-sensitive FET-biosensors based on lectin-glycoprotein binding. Biosens. Bioelectron. 12, 1229–1236.

    Article  Google Scholar 

  27. Iida, T. and Kawabe, T. Eur. Pat. Appl. EP 257919 A2.

    Google Scholar 

  28. Kullick, T. (1994) Fortschrittberichte VDI, Reihe 8 Nr. 421, VDI-Verlag.

    Google Scholar 

  29. Kullick, T., Beyer, M., Henning, J., Lerch, T., Quack, R., Zeitz, I., Hitzmann, I, Scheper, T., and Schugerl, K. (1994) Application of enzyme field-effect transistor sensor arrays as detectors in a flow-injection system forsimultaneous monitoring of medium components. Part I. Preparation and calibration. Anal. Chim Acta 296, 263–269.

    Article  CAS  Google Scholar 

  30. Miyahara, Y., Matsu, F, Morlizumi, T., and Karube, I. (1983) Analytical Chemistry Symposia Series, vol. 17, Elsevier, Amsterdam, pp. 501.

    Google Scholar 

  31. Gotoh, M., Tamiya, E, Karaube, I., and Kagawa, Y. (1987) A microsensor adenosine-5′-triphosphate pH-sensitive field effect transistors. Anal Chim Acta 187, 287.

    Article  Google Scholar 

  32. Tamiya, E., Seki, A., Karube, I., Gotoh, M., and Shimizu, I. (1988) Inosine sensor based on an amorphous silicon ISFET Anal Lett 21, 1785–1800

    Google Scholar 

  33. Dransfeld, I., Hintsche, R., Moritz, W., Pham, M. T, Hoffmann, W, and Hueller, J. (1990) Biosensors for glucose and lactate using fluoride ion sensitive field effect transistors. Anal Lett 23(2), 437.

    CAS  Google Scholar 

  34. Hartmeier, W. (1986) Immobilisierte Biokatalysatoren, Springer Verlag, Berlin.

    Google Scholar 

  35. Anzai, J, Lee, S., and Osa, T (1989) Enzyme sensors based on an ISFET coated with Langmuir-Blodgett membranes. Use of polyethylenimine as a spacer for immobilizing a-chymotrypsin. Chem. Pharm. Bull 37(12), 3320

    PubMed  CAS  Google Scholar 

  36. Gil, M. H., Piedade, A. P., Alegret, S., Alonso, J., Martinez-Fabregas, E, and Orellana, A. (1992) Covalent binding of urease on ammonium-selective potentiometric membranes. Biosens Bioelectr. 7, 645.

    Article  CAS  Google Scholar 

  37. Shulga, A. A, Koudelka-Hep, M., and Rooij, N. F. (1994) Glucose-sensitive enzyme field effect transistor using potassium ferricyanide as an oxidizing substrate. Anal Chem. 66(2), 205–210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Ulber, R., Scheper, T. (1998). Enzyme Biosensors Based on ISFETs. In: Mulchandani, A., Rogers, K.R. (eds) Enzyme and Microbial Biosensors. Methods in Biotechnology, vol 6. Humana Press. https://doi.org/10.1385/0-89603-410-0:35

Download citation

  • DOI: https://doi.org/10.1385/0-89603-410-0:35

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-410-5

  • Online ISBN: 978-1-59259-484-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics