Enzyme Biosensors Based on Gas Electrodes

  • Marco Mascini
  • Gianna Marrazza
Part of the Methods in Biotechnology book series (MIBT, volume 6)


Enzyme biosensors based on gas electrodes are reviewed in Table 1. Gas probes exploited for assembly of biosensors have been mainly CO2 and NH3 electrodes, and the range of concentration of most metabolites is 10−5–10−2 M. Enzymes are usually immobilized on the gas membrane in order to obtain the desired selectivity for specific metabolites


Immobilize Enzyme Void Volume Gaseous Form Internal Solution Glycine Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wawro, R. and Rechnitz, G. A (1976) Immobilized enzyme electrode for L-asparagine. J Membr. Sci 1, 143–148.CrossRefGoogle Scholar
  2. 2.
    Fatibello-Filho, O., Suleiman, A., and Guilbault, G. G. (1989) Enzyme electrode for the determination of aspartate. Biosensors 4, 313–321.CrossRefGoogle Scholar
  3. 3.
    Papastathopoulos, D S. and Rechnitz, G. A. (1976) Highly selective enzyme electrode for 5′-adenosine monophosphate. Anal Chem 48, 862–864.PubMedCrossRefGoogle Scholar
  4. 4.
    Meyerhoff, M. and Rechnitz, G A (1976) An activated enzyme electrode for creatinine. Anal Chim. Acta 85, 277–285.PubMedCrossRefGoogle Scholar
  5. 5.
    Jensen, M A. and Rechnitz, G. A. (1979) Enzyme “sequence” electrode for D-gluconate. J. Membr Sci 5, 117–127CrossRefGoogle Scholar
  6. 6.
    Arnold, M. A. and Rechnitz, G A (1980) Comparison of bacterial, mitochondrial, tissue and enzyme biocatalysts for glutamine selective membrane electrodes Anal Chem 52, 1170–1174PubMedCrossRefGoogle Scholar
  7. 7.
    Kovach, P M. and Meyerhoff, M. (1982) Development and application of a histidine-selective biomembrane electrode Anal. Chem 54, 217–220.PubMedCrossRefGoogle Scholar
  8. 8.
    Walters, R. R., Johonson, P A., and Buck, R. P. (1980) Histidine ammonia-lyase enzyme electrode for determination of L-histidine Anal. Chem 52, 1684–1690CrossRefGoogle Scholar
  9. 9.
    White, W. C. and Guilbault, G. G. (1978) Lysine specific enzyme electrode for determination of lysine in grains and food stuffs. Anal Chem. 50, 1481–1485.PubMedCrossRefGoogle Scholar
  10. 10.
    Fung, K. W, Kuan, S. S., Sung, H. Y., and Guilbault, G. G. (1979) Methionine selective enzyme electrode Anal. Chem. 51, 2319–2324.CrossRefGoogle Scholar
  11. 11.
    Guilbault, G. G. and Shu, F. R. (1972) Enzyme electrodes based on the use of a carbon dioxide sensor Anal Chem 44, 2161–2166PubMedCrossRefGoogle Scholar
  12. 12.
    Mascini, M. and Guilbault, G. G. (1977) An urease coupled ammonia electrode for urea determination in blood serum. Anal Chem 49, 795–798PubMedCrossRefGoogle Scholar
  13. 13.
    Tran-Minh, C and Brown, G. (1975) Construction and study of electrodes using cross-linked enzymes. Anal Chem 47, 1359–1364.PubMedCrossRefGoogle Scholar
  14. 14.
    Kawashima, T. and Rechnitz, G. A. (1979) Potentiometric enzyme electrode for uric acid. Anal Chim Acta 83, 9–17CrossRefGoogle Scholar
  15. 15.
    Mascini, M. and Palleschi, G. (1989) Design and applications of continuous monitoring probes. Sel El Rev. 11, 191–264.Google Scholar
  16. 16.
    Mascini, M (1995) Potentiometry enzyme electrodes, in Encyclopedia of Analytical Science (Townsheand, A., ed.), Academic, London, UK, pp. 4112–4118.Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Marco Mascini
    • 1
  • Gianna Marrazza
    • 1
  1. 1.Dipartimento di Santta Pubblica Epidemiologia e Chimica Analitica AmbientalaUniversita di FirenzeItaly

Personalised recommendations