Skip to main content

NMR Characterization of Amphipathic Helical Peptides

  • Protocol
Antibacterial Peptide Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 78))

  • 1951 Accesses

Abstract

The remarkable advances and improvements in nuclear magnetic resonance (NMR) technology and methodology in recent years have made significant impact on the investigation of biological macromolecules, including amphipathic helical peptides. Through NMR studies, the three-dimensional structures of such peptides can now be obtained in solution at resolution levels comparable to those of single-crystal X-ray structures. NMR spectroscopy can provide a wealth of additional information about peptides in solution. For example, oligomerization, peptide-lipid interactions, and dynamics of the peptide can be investigated. The diversity of information obtainable from NMR data as well as the ability to study the peptides under conditions analogous to those found in vivo makes NMR spectroscopy increasingly attractive for the investigation of biological macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessler, H., Gehrke, M., and Griesinger, C. (1988) Two dimensional NMR spectroscopy: background and overview of the experiments. Angew. Chem., Int. Ed. Engl. 27, 490–536.

    Article  Google Scholar 

  2. Clore, G. M. and Gronenborn, A. M. (1991) Two-, three-, and four-dimensional NMR methods for obtaining larger and more precise three-dimensional structures of proteins in solution. Ann. Rev. Biophys. Biophys. Chem. 20, 29–63.

    Article  CAS  Google Scholar 

  3. Bax, A. and Grzesiek, S. (1993) Methodological advances in protein NMR. Act. Chem. Res. 26, 131–138.

    Article  CAS  Google Scholar 

  4. Redfield, C. (1993) Resonance assignment strategies for small proteins, in NMR of Macromolecules: A Practical Approach (Roberts, G. C. K., ed.), IRL, Oxford, pp. 71–100.

    Google Scholar 

  5. Markley, J. L. and Kamosho, M. (1993) Stable isotope labelling and resonance assignments in larger proteins, in NMR of Macromolecules: A Practical Approach (Roberts, G. C. K., ed.), IRL, Oxford, pp. 101–152.

    Google Scholar 

  6. Wüthrich, K. (1995) NMR—this other method for protein and nucleic acid structure determination. Acta Crystallogr., Sect. D D51, 249–270.

    Article  Google Scholar 

  7. Clore, G. M. and Gronenborn, A. M. (1991) Applications of three-and four-dimensional heteronuclear NMR spectroscopy to protein structure determination. Proc. Nucl. Magn. Reson. Spectrosc. 23, 43–92.

    Article  CAS  Google Scholar 

  8. Dyson, H. J. and Wright, P. E. (1991) Defining solution conformations of small linear peptides. Ann. Rev. Biophys. Biophys. Chem. 20, 519–538.

    Article  CAS  Google Scholar 

  9. Olson, D. L., Peck, T. L., Webb, A. G., Magin, R. L., and Sweedler, J. V. (1995) High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270, 1967–1970.

    Article  CAS  Google Scholar 

  10. Lee, K. H., Fitton, J. E., and Wüthrich, K. (1987) Nuclear magnetic resonance investigation of the conformation of δ-haemolysm bound to dodecylphosphocho-line micelles. Biochim. Biophys Acta. 911, 144–153.

    Article  PubMed  CAS  Google Scholar 

  11. Wishart, D. S., Sykes, B. D., and Richards, F. M. (1992) The chemical shift index, a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651.

    Article  PubMed  CAS  Google Scholar 

  12. Wishart, D. S., Sykes, B. D., and Richards, F. M. (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J. Mol. Biol. 222, 311–333.

    Article  PubMed  CAS  Google Scholar 

  13. Iwai, H., Nakajima, Y., Natori, S., and Arata, Y. (1993) Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR. Eur. J. Biochem. 217, 639–644.

    Article  PubMed  CAS  Google Scholar 

  14. Bodon, A., Berthault, P., Segalas, I., Perly, B., and Wróblewski, H. (1995) Solution structure determination by NMR spectroscopy of a synthetic peptide corresponding to a putative amphipathic α-helix of spiralin resonance assignment, distance geometry and simulated annealing. Biochim. Biophys. Acta. 1235, 169–177.

    Article  Google Scholar 

  15. Fan, F. and Mayo, K. H. (1995) Effect of pH on the conformation of backbone dynamics of a 27-residue peptide in trifluoroethanol. J. Biol. Chem. 270, 24,693–24,701.

    Article  PubMed  CAS  Google Scholar 

  16. Sipos, D., Andersson, M., and Ehrenberg, A. (1992) The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR. Eur. J. Biochem. 209, 163–169.

    Article  PubMed  CAS  Google Scholar 

  17. Tanford, C. and Reynolds, J. A. (1976) Characterization of membrane proteins in detergent solutions. Biochim. Biophys. Acta. 457, 133–170.

    PubMed  CAS  Google Scholar 

  18. Lauterwein, J., Bösch, C., Brown, L. R., and Wuthrich, K. (1979) Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim. Biophys. Acta. 556, 244–264.

    Article  PubMed  CAS  Google Scholar 

  19. Seigneuret, M. and Lévy, D. (1995) A high-resolution 1HNMR approach for structure determination of membrane peptides and proteins in non-deuterated detergent: application to mastoparan X solublized in n-octylglucoside. J. Biomol. NMR 5, 345–352.

    Article  PubMed  CAS  Google Scholar 

  20. McDonnell, P. A. and Opella, S. J. (1993) Effect of detergent concentration on multidimensional solution NMR spectra of membrane proteins in micelles. J. Magn. Reson. Ser. B. 102, 120–125.

    Article  CAS  Google Scholar 

  21. Primrose, W. U. (1993) Sample preparation, in NMR of Macromolecules: A Practical Approach (Roberts, G. C. K., ed.), IRL, Oxford, pp. 7–34.

    Google Scholar 

  22. Henry, G. D. and Sykes, B. D. (1994) Methods to study membrane protein structure in solution. Methods Enzymol. 239, 515–535.

    Article  PubMed  CAS  Google Scholar 

  23. Derome, A. E. (1988) Modern NMR techniques for chemistry research Pergamon Press, Oxford.

    Google Scholar 

  24. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids Wiley, New York.

    Google Scholar 

  25. Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S., and Sykes, B. D. (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids I Investigation of nearest-neighbor effects. J. Biomol. NMR 5, 67–81.

    Article  PubMed  CAS  Google Scholar 

  26. Guéron, M., Plateau, P., and Decorps, M. (1991) Solvent signal suppression in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 23, 135–209.

    Article  Google Scholar 

  27. Wider, G., Hosur, R. V., and Wuthrich, K. (1983) Suppression of the Solvent Resonance in 2D NMR Spectra of Proteins in H2O Solution. J. Magn. Reson. 52, 130–135.

    CAS  Google Scholar 

  28. Hore, P. J. (1989) Solvent Suppression. Methods Enzymol. 176, 64–77.

    Article  PubMed  CAS  Google Scholar 

  29. Piotto, M., Saudek, V., and Sklenar, V. (1992) Gradient-tailored excitation for single quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2, 661–665.

    Article  PubMed  CAS  Google Scholar 

  30. Billeter, M., Braun, W., and Wuthrich, K. (1982) Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. J. Mol. Biol. 155, 321–346.

    Article  PubMed  CAS  Google Scholar 

  31. Wührich, K., Wider, G., Wagner, G., and Braun, W. (1982) Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. J. Mol. Biol. 155, 311–319.

    Article  Google Scholar 

  32. Englander, S. W. and Wand, A. J (1987) Main-chain-directed strategy for the assignment of 1H NMR spectra of proteins. Biochemistry 26, 5953–5958.

    Article  PubMed  CAS  Google Scholar 

  33. Celda, B. and Montelione, G. (1993) Total correlation spectroscopy (TOCSY) of proteins using coaddition of spectra recorded with several mixing times. J. Magn. Reson. Ser. B. 101, 189–193.

    Article  CAS  Google Scholar 

  34. Evans, J. N. S. (1995) Biomolecular NMR Spectroscopy Oxford University Press, Oxford.

    Google Scholar 

  35. Kuntz, I. D., Kosen, P. A., and Craig, E. C. (1991) Amide chemical shafts in many helices in peptides and proteins are periodic. J. Am. Chem. Soc. 113, 1406–1408.

    Article  CAS  Google Scholar 

  36. Jimenez, M. A., Blanco, F. J., Rico, M., Santoro, J., Herranz, J., and Nieto, J. L. (1992) Periodic properties of proton conformational shifts in isolated protein helices. Eur. J. Biochem. 207, 39–49.

    Article  PubMed  CAS  Google Scholar 

  37. Blanco, F. J., Herranz, J., Gonzales, C., Jimenez, M. A., Rico, M., Santoro, J., and Nieto, J. L. (1992) NMR chemical shifts: a tool to characterize distortions of peptide and protein helices. J. Am. Chem. Soc. 114, 9676–9677.

    Article  CAS  Google Scholar 

  38. Zhou, N. E., Zhu, B-Y., Sykes, B. D., and Hodges, R. S. (1992) Relationship between amide proton chemical shifts and hydrogen bonding in amphipathic α-helical peptides. J. Am. Chem. Soc. 114, 4320–4326.

    Article  CAS  Google Scholar 

  39. Molday, R. S., Englander, S. W., and Kallen, R. G. (1972) Primary structure effects on peptide group hydrogen exchange. Biochemistry 11, 150–158.

    Article  PubMed  CAS  Google Scholar 

  40. Bar, Y., Miline, J. S., Mayne, L., and Englander, S. W. (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75–86.

    Article  Google Scholar 

  41. Goodman, E. M. and Kim, P. S. (1991) Periodicity of amide proton exchange rates in a coiled-coil leucine zipper peptide. Biochemistry 30, 11,615–11,620.

    Article  PubMed  CAS  Google Scholar 

  42. Merutka, G., Morikis, D., Bruschweiler, R., and Wright, P. E. (1993) NMR Evidence for multiple conformations in a highly helical model peptide. Biochemistry 32, 13,089–13,097.

    Article  PubMed  CAS  Google Scholar 

  43. van Gunsteren, W. F., Brunne, R. M., Gras, P., van Schaik, R. C., Schiffer, C. A., and Torda, A. E. (1994) Accounting for molecular mobility in structure determination based on nuclear magnetic resonance spectroscopic and X-ray diffraction data. Methods Enzymol. 239, 619–654.

    Article  PubMed  Google Scholar 

  44. Nanzer, A. P., Poulsen, F. M., van Gunsteren, W. F., and Torda, A. E. (1994) A reassessment of the structure of chymotrypsin inhibitor 2 (CI-2) using time-averaged NMR restraints. Biochemistry 33, 14,503–14,511.

    Article  PubMed  CAS  Google Scholar 

  45. Holak, T. A., Engstrom, A., Kraulis, P. J., Lindeberg, G., Bennich, H., Jones. T. A., Gronenborn, A. M., and Clore, G. M. (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27, 7620–7629.

    Article  PubMed  CAS  Google Scholar 

  46. Bazzo, R., Tappin, M. J., Pastore, A., Harvey, T. S., Carver, J. A., and Campbell, I. D. (1988) The structure of melittin: A 1H-NMR study in methanol. Eur. J. Biochem. 173, 139–146.

    Article  PubMed  CAS  Google Scholar 

  47. Fesik, S. W. and Zuiderweg, E. R. P. (1990) Heteronuclear three-dimensional NMR spectroscopy of Isotopically labelled biological macromolecules. Q. Rev. Biophys. 23, 97–131.

    Article  PubMed  CAS  Google Scholar 

  48. Otting, G. and Wüthrich, K. (1990) Heteronuclear filters in two-dimensional [1H-1HI-NMR spectroscopy combined use with isotope labeling for studies of macro-molecular conformation and intermolecular interactions. Q. Rev. Biophys. 23, 39–96.

    Article  PubMed  CAS  Google Scholar 

  49. Opella, S. J., Kim, Y., and McDonnell, P. (1994) Experimental nuclear magnetic resonance studies of membrane proteins. Methods Enzymol. 239, 536–560.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Wang, X., Morden, K.M. (1997). NMR Characterization of Amphipathic Helical Peptides. In: Shafer, W.M. (eds) Antibacterial Peptide Protocols. Methods In Molecular Biology™, vol 78. Humana Press. https://doi.org/10.1385/0-89603-408-9:85

Download citation

  • DOI: https://doi.org/10.1385/0-89603-408-9:85

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-408-2

  • Online ISBN: 978-1-59259-564-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics