Skip to main content

Interaction of Cationic Peptides with Bacterial Membranes

  • Protocol

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 78))

Abstract

A common feature of cationic peptides is that their site of action is at the membrane due to channel formation, and that they tend to possess strong selectivity towards then target membrane. For example, although moth cecropin and bee melittin are members of the same family of peptides that adopt amphipathic α-helical structures, the cecropins are strongly antibacterial and demonstrate minimal eukaryotic selectivity (i.e., toxicity), whereas melittin is a weak antibacterial compound but a potent toxin. Whereas the basis for selectivity is not completely understood, it has been shown to be due to the size of the transmembrane electrical potential gradient (up to −140 mV in bacterial cytoplasmic membranes compared with about −20 mV or less in eukaryotic membranes) and the lipid composition (bacterial membranes contain a large number of anionic lipids such as phosphatidyl glycerol and cardiolipin and lack cholesterol in their membranes). Gram-negative bacteria have an additional, outer membrane, and our data suggests that a further level of selectivity is expressed there in that there are Gram-positive bacteria-selective peptides that interact poorly with the outer membrane but (presumably) well with cytoplasmic membranes, whereas we have identified peptides that interact with the outer membrane, but are not bactericidal and thus do not interact with cytoplasmic membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sawyer, J. G., Martin, N. L., and Hancock, R. E. W. (1988) Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa. Infec. Immun. 56, 693–698.

    CAS  Google Scholar 

  2. Piers, K. L. and Hancock, R. E. W. (1994) The interaction of a recombinant cecropin/melittin hybrid peptide with the outer membrane of Pseudomonas aeruginosa. Molec. Microbiol. 12, 951–958.

    Article  CAS  Google Scholar 

  3. Hancock, R. E. W. (1981) Ammoglycoside uptake and mode of action—with special reference to streptomycin and gentamicin. II. Effects of aminoglycosides on cells. Antimicrob. Chemother. 8, 429–445.

    Article  CAS  Google Scholar 

  4. Hancock, R. E. W. (1991) Bacterial outer membranes evolving concepts. ASM News 57, 175–182.

    Google Scholar 

  5. Moore, R. A., Bates, N. C., and Hancock, R. E. W. (1986) Interaction of poly-cationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob. Agents Chemother. 29, 496–500.

    PubMed  CAS  Google Scholar 

  6. Hancock, R. E. W. and Wong, P. G. W. (1984) Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob. Agents Chemother. 26, 48–52.

    PubMed  CAS  Google Scholar 

  7. Loh, B., Grant, C., and Hancock, R. E. W. (1984) Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 26, 546–551.

    PubMed  CAS  Google Scholar 

  8. Darveau, R. and Hancock, R. E. W. (1983) Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J. Bacteriol. 155, 831–838.

    PubMed  CAS  Google Scholar 

  9. Vaara, M. (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev. 56, 395–411.

    PubMed  CAS  Google Scholar 

  10. Piers, K. L., Brown, M. H., and Hancock, R. E. W. (1994) Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob. Agents Chemother. 38, 2311–2316.

    PubMed  CAS  Google Scholar 

  11. Matsuzaki, K., Harada M., Funakoshi, S., Fujii, N., and Miyajima, K. (1991) Physiochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers.Biochem Biophys Acta 1063, 162–170.

    Article  PubMed  CAS  Google Scholar 

  12. Sekharam, K. M., Bradrick, T. D., and Georghiou, S. (1991) Kinetics of melittin binding to phospholipid small unilamellar vesicles. Biochem Biophys Acta 1063, 171–174.

    Article  PubMed  CAS  Google Scholar 

  13. Vogel, H. and Jahnig, F. (1986) The structure of melittin in membranes. Biophys J. 50, 573–582.

    Article  PubMed  CAS  Google Scholar 

  14. Bechinger, B., Zasloff, M., and Opella, S. J. (1992) Structure and interactions of magainin antibiotic peptides in lipid bilayers: a solid-state nuclear magnetic resonance investigation. Biophys J. 62, 12–14.

    Article  PubMed  CAS  Google Scholar 

  15. Williams, R. W., Starman, R., Taylor, K. M. P., Gable, K., Beeler, T., Zasloff, M., and Covell, D. (1990) Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa. Biochemistry 29, 4490–4496.

    Article  PubMed  CAS  Google Scholar 

  16. Sipos, D., Andersson, M/, and Ehrenberg, A. (1992) The structure of the mammalian antibacterial peptide cecropin PI in solution, determined by proton-NMR. Eur. J. Biochem. 209, 163–169.

    Article  PubMed  CAS  Google Scholar 

  17. Andreu, D., Ubach, J., Boman, A., Wahlur, B., Wade, D., Merrifield, R. B., and Boman, H. G. (1992) Shortened cecropin A-melittin hybrids. Significant size reductions retains potent antibiotic activity. FEBS Letts. 296, 190–194.

    Article  CAS  Google Scholar 

  18. Agawa, Y., Lee, S., Ono, S., Aoyagi, H., Ohno, M., Tamguchi, T., Anzai, K., and Kirino, Y. (1991) Interaction with phospholipid bilayers, ion channel formation, and antimicrobial activity of basic amphiphilic alpha-helical model peptides of various chain lengths. J. Biol. Chem. 266, 20,218–20,222.

    PubMed  CAS  Google Scholar 

  19. Christensen, B., Fink, J., Merrifield, R. B., and Mauzerall, D. (1988) Channel forming properties of cecropins and related model compounds incorporated into planar lipid membranes. PNAS. 85, 5072–5076.

    Article  PubMed  CAS  Google Scholar 

  20. Kagan, B. L., Selsted, M. E., Ganz, T., and Lehrer, R. I. (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. PNAS 87, 210–214.

    Article  PubMed  CAS  Google Scholar 

  21. Hanke, W., Methfessel, C., Wilmsen, H. U., Katz, E., Jung, G., and Bohem, G. (1983) Melittin and a chemically modified trichotoxin form alamethicin-type multistate pores. Biochem. Biophys. Acta 727, 108–114.

    Article  PubMed  CAS  Google Scholar 

  22. Kordel, M., Benz, R., and Sahl, H. G. (1988) Mode of action of the staphylococcin like peptide Pep5 voltage dependent depolarization of bacterial and artificial membranes. J. Bacteriol. 170, 84–88.

    PubMed  CAS  Google Scholar 

  23. Cociancich, S., Ghazi, A., Hetru, C., Hoffman, J. A., and Letellier, L. J. (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. Biol. Chem. 268, 19,239–19,245.

    CAS  Google Scholar 

  24. Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., and Shai, Y. (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31, 12,416–12,423.

    Article  PubMed  CAS  Google Scholar 

  25. Gazit, E., Boman, A., Boman, H. G., and Shai, Y. (1995) Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry 34, 11,479–11,488.

    Article  PubMed  CAS  Google Scholar 

  26. Schindler, P. R. G. and Tueber, M. (1975) Action of Polymyxin B on bacterial membranes: morphological changes in the cytoplasm and in the outer membrane of Salmonella typhimurium and Escherichia coli B. Antimicrob. Agents Chem. 8, 95–104.

    CAS  Google Scholar 

  27. Bader, J. and Teuber, M. (1973) Binding to the 0-antigenic lipopolysaccharide of Salmonella typhimurium. Z. Naturforsch. 28c, 422–430.

    Google Scholar 

  28. Kelly, N. M., Young, Y., and Cross, A. S. (1991) Differential induction of tumor necrosis factor by bacteria expressing rough and smooth lipopolysaccharide phenotypes. Infect. Immun. 59, 4491–4496.

    PubMed  CAS  Google Scholar 

  29. Amsterdam, D. (1991) Antimicrobial combinations, in Antibiotics in Laboratory Medicine. (Lorian, V., ed.) Williams and Wilkins, Baltimore, pp 432–492.

    Google Scholar 

  30. Peterson, A. A., Hancock, R. E. W., and McGroarty, J. (1985) Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa. J. Bacteriol. 164, 1256–1261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Fidai, S., Farmer, S.W., Hancock, R.E.W. (1997). Interaction of Cationic Peptides with Bacterial Membranes. In: Shafer, W.M. (eds) Antibacterial Peptide Protocols. Methods In Molecular Biology™, vol 78. Humana Press. https://doi.org/10.1385/0-89603-408-9:187

Download citation

  • DOI: https://doi.org/10.1385/0-89603-408-9:187

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-408-2

  • Online ISBN: 978-1-59259-564-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics