Skip to main content

The Preparation of Riboprobes

  • Protocol
Basic DNA and RNA Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 58))

Abstract

The isolation and characterization of RNA polymerases from the Salmonella phage SP6 and the E. coli phages T7 and T3 have revolutionized all aspects of the study of RNA metabolism (16). Indeed, it is now possible to generate unlimited quantities of virtually any RNA molecule in a chemically pure form. This technology is based on a number of properties of the viral transcription units. First, and in contrast to their cellular counterparts, the enzymes are single-chain proteins that are easily purified from phage-infected cells and are now produced by recombinant DNA technology. Second, they very specifically recognize their own promoters, which are contiguous 17–20 bp long sequences rarely encountered in bacterial, plasmid, or eukaryotic sequences. Third, the enzymes are highly processive, allowing the efficient synthesis of very long transcripts from DNA templates. In this chapter, the preparation of the DNA templates and the transcription from the template of 32P-labeled synthetic RNA molecules, commonly called riboprobes, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butler, E. T. and Chamberlin, M. J (1984) Bacteriophage SP6-specific RNA polymerase. J. Biol. Chem. 257, 5772–5788.

    Google Scholar 

  2. Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridisation probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12, 7035–7056.

    Article  PubMed  CAS  Google Scholar 

  3. Davanloo, P., Rosenberg, A. H., Dunn, J. J., and Studier, F. W. (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 81, 2035–2039.

    Article  PubMed  CAS  Google Scholar 

  4. Krieg, P. A. and Melton, D. A. (1987) In vitro RNA synthesis with SP6 RNA polymerase Methods Enzymol. 155, 397–415.

    Article  PubMed  CAS  Google Scholar 

  5. Yisraeli, J. K. and Melton, D. A. (1989) Synthesis of long, capped transcripts in vitro by SP6 and T7 RNA polymerases. Methods Enzymol. 180, 42–50

    Article  PubMed  CAS  Google Scholar 

  6. Milligan, J. F. and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62.

    Article  PubMed  CAS  Google Scholar 

  7. Milligan, J. F., Groebe, D. R., Witherell, G. W, and Uhlenbeck, O. C. (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798.

    Article  PubMed  CAS  Google Scholar 

  8. Roitsch, T. and Lehle, L. (1989) Requirements for efficient in vitro transcription and translation: a study using yeast invertase as a probe. Biochim. Biophys. Acta 1009, 19–26

    PubMed  CAS  Google Scholar 

  9. Schenbon, E. T. and Mierendorf, R. C. (1985) A novel transcription property of SP6 and T7 RNA polymerases dependence on template structure. Nucleic Acids Res. 13, 6223–6234.

    Article  Google Scholar 

  10. Nam, S. C. and Kang, C. (1988) Transcription initiation site selection and abortive initiation cycling of phage SP6 RNA polymerase. J. Biol. Chem. 263, 18,123–18,127.

    PubMed  CAS  Google Scholar 

  11. Solazzo, M., Spinelli, L., and Cesareni, G. (1987) SP6 RNA polymerase: sequence requirements downstream from the transcription start sate Focus 10, 11,12.

    Google Scholar 

  12. Moreau, G. (1991) RNA binding properties of the Xenopus La proteins Ph.D. thesis, University of Geneva.

    Google Scholar 

  13. Sappino, A.-P., Huarte, J., Belin, D., and Vassalli, J.-D. (1989) Plasminogen activators in tissue remodeling and invasion. mRNA localisation in mouse ovaries and implanting embryos. J. Cell. Biol. 109, 2471–2479.

    Article  PubMed  CAS  Google Scholar 

  14. Krieg, P. A. (1991) Improved synthesis of full length RNA probes at reduced incubation temperatures. Nucleic Acids Res. 18, 6463.

    Article  Google Scholar 

  15. Belin, D., Wohlwend, A., Schleuning, W.-D., Kruithof, E. K. O., and Vassalli, J.-D. (1989) Facultative polypeptide translocation allows a single mRNA to encode the secreted and cytosolic forms of plasminogen activators inhibitor 2. EMBO J. 8, 3287–3294.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Belin, D. (1996). The Preparation of Riboprobes. In: Harwood, A.J. (eds) Basic DNA and RNA Protocols. Methods in Molecular Biology™, vol 58. Humana Press. https://doi.org/10.1385/0-89603-402-X:83

Download citation

  • DOI: https://doi.org/10.1385/0-89603-402-X:83

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-402-0

  • Online ISBN: 978-1-59259-251-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics