Skip to main content

Molecular Modeling of Neuropeptides

  • Protocol
Neuropeptide Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 73))

Abstract

Molecular modeling is the science of the generation, manipulation, and representation of three-dimensional structures of molecules using computational chemistry and high resolution computer graphics. Since peptides of biological interest are large molecules, molecular mechanics (MM) (1) is used almost exclusively as a computational tool. Molecular mechanics is a nonquantum method for calculating molecular properties that do not depend on electronic effects. The forces acting on the atoms in a molecule are described in terms of a set of classical potential functions such as harmonic oscillators, Morse potentials, and Lennard-Jones potentials. Parameters of these functions are usually obtained from experimental structural and thermodynamic studies of model molecules. A set of equations together with then parameters is called a force field. Separate potential functions are used to calculate bond stretching, angle bending, bond twisting, and nonbonded interactions such as van der Waals and electrostatic interactions. Molecular mechanics methods reproduce experimental results well if the compound being examined is similar to those used to create the parameters. Consequently, several force fields have been developed for computations on peptides, including CHARMM (2), AMBER (3), DISCOVER (4), GROMOS (5, and ECEPP (6). The performance of the different force fields in their application to peptides and proteins, however, should be evaluated on the basis of published data. Commercially available molecular modeling packages implement one of these force fields. The computational procedure described below was carried out using the SYBYL 6.1 (7) package in which the AMBER force field was implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burkert, U. and Allinger, N. J. (1982) Molecular Mechanics American Chemical Society, Washington, DC.

    Google Scholar 

  2. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) A program for macromolecular energy minimization and dynamics calculations. J. Comput. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  3. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., Jr., and Weiner, P. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins J. Am. Chem. Soc. 106, 765–784.

    Article  CAS  Google Scholar 

  4. Maple, J. R., Hwang, M.-J., Stockfish, T. P., Dinur, U., Waldman, M., Ewig, C S., and Hagler, A. T. (1994) Derivation of class II force fields. I Methodology and quantum force field for the alkyl functional group and alkene molecules. J. Comput. Chem. 15, 162–182.

    Article  CAS  Google Scholar 

  5. van Gunsteren, W. F. and Berendsen, H. J. C. (1987) Groningen Molecular Simulation (GROMOS) Library Manual. Biomos, Groningen.

    Google Scholar 

  6. Némethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., Rumsey, S., and Cheraga, H. A. (1992) Energy parameters in polypeptides. 10 Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J. Phys. Chem. 96, 6472–6484.

    Article  Google Scholar 

  7. SYBYL 6.1 (1994) Tripos, St. Louis, MI 6 3144–2913.

    Google Scholar 

  8. Shlick, T. (1992) Optimization methods in computational chemistry, in Reviews in Computational Chemistry III (Lipkowitz, K. B. and Boyd, D. B., eds.), VCH, New York, pp. 1–71.

    Chapter  Google Scholar 

  9. Kirkpatrick, S., Gelatt, C. D., Jr, and Vecchi, M. P. (1983) Optimization by simulated annealing. Science 220, 671–680.

    Article  PubMed  CAS  Google Scholar 

  10. Collins, N. E., Eglese, R. W., and Golden, B. L. (1988) Simulated annealing-an annotated bibliography. Am. J. Math Management Sci. 8, 209–307.

    Google Scholar 

  11. Zimmerman, S. S., Pottle, M. S., Némethy, G., and Scheraga, H. A. (1977) Conformational analysis of the 20 naturally occurring amino acid residues using ECEPP. Macromolecules 10, 1–9.

    Article  PubMed  CAS  Google Scholar 

  12. Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P. (1987) The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271.

    Article  CAS  Google Scholar 

  13. Jorgensen, W. L. (1981) Transferable intermolecular potential functions for water, alcohols and ethers. Application to liquid water. J. Am. Chem. Soc. 103, 335–340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc. Totowa, NJ

About this protocol

Cite this protocol

Lovas, S., Murphy, R.F. (1997). Molecular Modeling of Neuropeptides. In: Irvine, G.B., Williams, C.H. (eds) Neuropeptide Protocols. Methods in Molecular Biology™, vol 73. Humana Press. https://doi.org/10.1385/0-89603-399-6:209

Download citation

  • DOI: https://doi.org/10.1385/0-89603-399-6:209

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-399-3

  • Online ISBN: 978-1-59259-559-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics