Skip to main content

Protein Engineering with Nonstandard Amino Acids

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 77))

Abstract

Site-directed mutagenesis has become an extremely powerful tool for the study of protein folding, protein-protein interactions, enzymatic catalysis, and other structure-function issues. Whereas this technique has had a major impact, it nonetheless has been limited to the 20 “proteinogenic” (standard) amino acids normally incorporated during ribosomal biosynthesis. This limitation has precluded the ability to site-specifically incorporate other amino acids that have been specifically designed to probe structure, function, or activity in novel ways. The ability to modify a protein by site-specifically introducing such non-standard amino acids with novel functionality would thus be useful in many investigations, but in addition, the ability to introduce nonstandard amino acids with more conservative modifications than are allowed by traditional site-directed mutagenesis (i.e., substitution of a single atom within an amino acid side chain) also could be quite useful.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bain, J. D., Glabe, C. G., Dix, T. A., Chamberlin, A. R., and Diala, E. S. (1989) Biosynthetic site-specific incorporation of a non-natural amino acid into a polypeptide. J. Am. Chem. Soc. 111, 8013–8014.

    Article  CAS  Google Scholar 

  2. Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C., and Schultz, P. G. (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244, 182–188.

    Article  PubMed  CAS  Google Scholar 

  3. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  4. Jones, R. A. (1984) Preparation of protected deoxyribonucleotides, in Oligonucleotide Synthesis (Gait, M. J., ed. ), IRL, Oxford, pp 23–27.

    Google Scholar 

  5. Uhlmann, E. and Engels, J. (1986) Chemical 5′-phosphorylation of oligonucleotides valuable in automated DNA synthesis. Tetrahedron Lett. 27, 1023–1026.

    Article  CAS  Google Scholar 

  6. Heaphy, S., Singh, M., and Gatt, M. J. (1987) Effect of single amino acid changes in the region of the adenylation site of T4 RNA ligase. Biochemistry 26, 1688–1696.

    Article  PubMed  CAS  Google Scholar 

  7. Roesser, J. R., Xu, C., Payne, R. C., Surratt, C. K., and Hecht, S. M., (1989) Preparation of misacylated aminoacyl-tRNA(Phe)’s useful as probes of the ribosomal acceptor site. Biochemistry 28, 5185–5195.

    Article  PubMed  CAS  Google Scholar 

  8. Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M. A., and Bock, A. (1988) Gene for a novel tRNA species that accepts 1-serine and cotranslationally inserts selenocysteine. Nature 331, 723–725.

    Article  PubMed  CAS  Google Scholar 

  9. Soll, D. (1988) Genetic code enter a new amino acid. Nature 331, 662–663.

    Article  PubMed  CAS  Google Scholar 

  10. Fersht, A. R. and Dingwall, C. (1979) Evidence for the double-sieve editing mechanism in protein synthesis. Steric exclusion of isoleucine by valyl-tRNA synthetases. Biochemistry 18, 2627–2631.

    Article  PubMed  CAS  Google Scholar 

  11. Bruce, A. G., Atkins, J. F., Wills, N., Uhlenbeck, O., and Gesteland, R. F. (1982) Replacement of anticodon loop nucleotides to produce functional tRNAs amber suppressors derived from yeast tRNAPhe. Proc. Natl. Acad. Sci. USA 79, 7127–7131.

    Article  PubMed  CAS  Google Scholar 

  12. Bruce, A. G. and Uhlenbeck, O. C. (1982) Enzymatic replacement of the anticodon of yeast phenylalanine transfer ribonucleic acid. Biochemistry 21, 855–861.

    Article  PubMed  CAS  Google Scholar 

  13. Bain, J. D., Wacker, D. A., Kuo, E. E., Lyttle, M. H., and Chamberlin, A. R. (1991) Preparation of chemically misacylated semisynthetic nonsense suppressor tRNAs employed in biosynthetic incorporation of non-natural residues into proteins. J. Org. Chem. 56, 4615–4625.

    Article  CAS  Google Scholar 

  14. Noren, C. J., Anthony-Cahill, S. J., Suich, D. J., Noren, K. A., Griffith, M. C., and Schultz, P. G. (1990) In vitro suppression of an amber mutation by a chemically aminoacylated transfer RNA prepared by runoff transcription. Nuc. Acids Res. 18, 83–88.

    Article  CAS  Google Scholar 

  15. Milligan, J. F., Groebe, D. R., Witherell, G. W., and Uhlenbeck, O. C. (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nuc. Acids Res. 15, 8783–8798.

    Article  CAS  Google Scholar 

  16. McClain, W. H., Foss, K., Jenkins, R. A., and Schneider, J. (1991) Rapid determination of nucleotides that define tRNA(Gly) acceptor identity. Proc Natl. Acad. Sci. USA 88, 6147–6151.

    Article  PubMed  CAS  Google Scholar 

  17. Rosa, M. D. (1979) Four T7 RNA polymerase promoters contain an identical 23 bp sequence. Cell 16, 815–825.

    Article  PubMed  CAS  Google Scholar 

  18. Wacker, D. A. (1994) New Amino Acids for Protein Photoaffinity Labeling. Ph. D. Dissertation, University of California, Irvine.

    Google Scholar 

  19. Schenborn, E. T. and Mierendorf, R. C. J. (1985) A novel transcription property of SP6 and T7 RNA polymerases dependence on template structure. Nucleic Acids Res. 13, 6223–6236.

    Article  PubMed  CAS  Google Scholar 

  20. Robertson, S. A., Noren, C. J., Anthony-Cahill, S. J., Griffith, M. G., and Schultz, P. G. (1989) The use of 5′-phospho-2 deoxyribocytidylylriboadenosine as a facile route to chemical aminoacylation of tRNA. Nucleic Acids Res. 17, 9649–9660.

    Article  PubMed  CAS  Google Scholar 

  21. Gottikh, B. P., Krayevsky, A. A., Tarussova, N. B., Purygin, P. P., and Tsilevich, T. L. (1970) The general synthetic route to amino acid esters of nucleotides and nucleoside-5′-triphosphates and some properties of these compounds. Tetrahedron 26, 4419–4433.

    Article  PubMed  CAS  Google Scholar 

  22. Snopek, T. J., Sugino, A., Agarwal, K. L., and Cozzarelli, N. R. (1976) Catalysis of DNA joining by bacteriophage T4 RNA ligase. Biochem Biophys. Res. Comm. 68, 417–424.

    Article  PubMed  CAS  Google Scholar 

  23. Sugino, A., Snopek, T. J., and Cozzarelli, N. R. (1977) Bacteriophage T4 RNA ligase. Reaction intermediates and interaction of substrates. J. Biol. Chem. 252, 1732–1738.

    PubMed  CAS  Google Scholar 

  24. Bruce, A. G. and Uhlenbeck, O. C. (1978) Reactions at the termini of tRNA with T4 RNA ligase. Nucl. Acids Res. 5, 3665–3677.

    Article  PubMed  CAS  Google Scholar 

  25. Baldini, G., Martoglio, B., Schachenmann, A., Zugliani, C., and Brunner, J. (1988) Mischarging Escherichia coli tRNAPhe with L-4′-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenylalanine, a photoactivatable analogue of phenylalanine. Biochemistry 27, 7951–7959.

    Article  PubMed  CAS  Google Scholar 

  26. Lederman, M. and Zubay, G. (1967) DNA-directed peptide synthesis 1. A comparison of T2 and Escherichia coli DNA-directed peptide synthesis in two cell-free systems. Biochim Biophys. Acta 149, 253–258.

    PubMed  CAS  Google Scholar 

  27. DeVries, J. K. and Zubay, G. (1967) DNA-directed peptide synthesis, II. The synthesis of the α-fragment of the enzyme β-galactosidase. Proc. Natl. Acad. Sci. USA 57, 1010–1012.

    Article  PubMed  CAS  Google Scholar 

  28. Zubay, G. (1973) In vitro synthesis of protein in microbial systems. Ann. Rev. Genet. 7, 267–287.

    Article  PubMed  CAS  Google Scholar 

  29. Collis, J. (1979) Cell-free synthesis of proteins coding for mobilization functions of ColE1 and transposition functions of Tn3. Gene 6, 29–42.

    Article  Google Scholar 

  30. Pratt, J. M. (1984) Coupled transcription-translation in prokaryotic cell-free systems, in Transcription and Translation. A Practical Approach (Hanes, B. D. and Higgins, S. J., eds.), IRL, Oxford, pp. 179–209.

    Google Scholar 

  31. Artz, S. W. and Broach, J. R. (1975) Histidine regulation in salmonella typhimurium an activator-attenuator model of gene regulation. Proc. Natl. Acad. Sci. USA 72, 3453–3457.

    Article  PubMed  CAS  Google Scholar 

  32. Keener, J. W. (1989) Nitrogen Regulation in Enteric Bacteria Protein Kinase and Phosphoprotein Phosphatase Activities of the NTRB and NTRC Proteins. Ph.D. Dissertation, University of California, Davis

    Google Scholar 

  33. Bremer, H. and Dennis, P. P. (1987) Modulation of chemical composition and other parameters of the cell by growth rate, in Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology (Neidhardt, F. C., ed. ), Am Soc Microbiol, Washington, DC, pp 1527–1542.

    Google Scholar 

  34. Yang, H. L., Ivashkiv, L., Chen, H. Z., Zubay, G., and Cashel, M. (1980) Cell-free coupled transcription-translation system for investigation of linear DNA segments. Proc. Natl. Acad. Sci. USA 77, 7029–7033.

    Article  PubMed  CAS  Google Scholar 

  35. Bywater, M., Bywater, R., and Hellman, L. (1983) A novel chromatographic procedure for purification of bacterial plasmids. Anal. Biochem. 132, 219–224.

    Article  PubMed  CAS  Google Scholar 

  36. Raymond, G. J., Bryant, P. G. I., Nelson, A., and Johnson, J. D. (1988) Large-scale isolation of covalently closed circular DNA using gel filtration chromatography. Anal. Biochem. 173, 125–133.

    Article  PubMed  CAS  Google Scholar 

  37. Miller, J. H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p 403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Steward, L.E., Chamberlin, A.R. (1998). Protein Engineering with Nonstandard Amino Acids. In: Martin, R. (eds) Protein Synthesis. Methods in Molecular Biology, vol 77. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-397-X:325

Download citation

  • DOI: https://doi.org/10.1385/0-89603-397-X:325

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-397-9

  • Online ISBN: 978-1-59259-563-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics