Skip to main content

Toeprinting Assays

Mapping by Blocks to Reverse Transcriptase Primer Extension

  • Protocol
Protein Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 77))

Abstract

Primer extension inhibition assays, toeprinting, have been used to examine formation of the translational initiation complex (116) as well as autogenous regulation of gene expression (1727) and nucleic acid secondary structure (6, 2833). A detailed protocol for examining complex formation between ribosome and tRNA at the mRNA ribosome-binding site (RBS) was first published by Hartz et al. (1). Modifications of the toeprint procedure to examine formation of the binary complex between ribosome and RBS were also published by Hartz et al. (6) and Ringquist et al. (7) as have protocols for examining formation of the translational initiation complex in the presence of the translational initiation factors 1, 2, and 3 (3,8,34). Recently, the toeprint method has been used to examine complex formation between RNA and RNA-binding proteins (3537).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartz, D., McPheeters, D. S., Traut, R., and Gold, L. (1988) Extension inhibition analysis of translation initiation complexes. Meth. Enzymol. 164, 419–425.

    Article  PubMed  CAS  Google Scholar 

  2. Kolakofsky, D. and Weissmann, C. (1971) Possible mechanism for transition of viral RNA from polysome to replication complex. Nature New Bio. 231, 42–46.

    Article  CAS  Google Scholar 

  3. Hartz, D., McPheeters, D. S., and Gold, L. (1989) Selection of the initiator tRNA by Escherichia coli initiation factors. Genes. Develop. 3, 1899–1912.

    Article  PubMed  CAS  Google Scholar 

  4. Hartz, D., Binkley, J., Hollingsworth, T., and Gold, L. (1990) Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Develop. 4, 1790–1800.

    Article  PubMed  CAS  Google Scholar 

  5. Hartz, D., McPheeters, D., and Gold, L. (1991) Influence of mRNA determinants on translation initiation in Escherichia coli. J. Mol. Biol. 218, 83–97.

    Article  PubMed  CAS  Google Scholar 

  6. Hartz, D., McPheeters, D., Green, L., and Gold, L. (1991) Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA. J. Mol. Biol. 218, 99–105.

    Article  PubMed  CAS  Google Scholar 

  7. Ringquist, S., MacDonald, M., Gibson, T., and Gold, L. (1993) Nature of the ribosomal mRNA track analysis of ribosome binding sites containing different sequences and secondary structure. Biochemistry. 32, 10,254–10,262.

    Article  PubMed  CAS  Google Scholar 

  8. Ringquist, S., Cunningham, P., Weitzmann, C., Formenoy, L., Pleij, C., Ofengand, J., and Gold, L. (1993) Translation initiation complex formation with 30S ribosomal particles mutated at conserved positions in the 3′-minor domain of 16S RNA. J. Mol. Biol. 234, 14–27.

    Article  PubMed  CAS  Google Scholar 

  9. Shean, C. S. and Gottesman, M. E. (1992) Translation of the prophage lambda cl transcript. Cell 70, 513–522.

    Article  PubMed  CAS  Google Scholar 

  10. Flache, P., Baumeister, R., and Hillen, W. (1992) The Tn10-encoded tetracycline resistance mRNA contains a translational silencer in the 5′ nontranslated region. J. Bacteriol. 174, 2478–2484.

    PubMed  CAS  Google Scholar 

  11. Balakin, A. G., Skripkin, E. A., Shatsky, I. N., and Bogdanov, A. A. (1992) Unusual ribosome binding properties of mRNA encoding bacteriophage lambda repressor. Nucleic. Acids Res. 20, 563–571.

    Article  PubMed  CAS  Google Scholar 

  12. Gross, G. (1991) RNase E cleavage in the atpE leader region of atpE/interferon-β hybrid transcripts in Escherichia coli causes enhanced rates of mRNA decay. J. Biol. Chem. 266, 17,880–17,884.

    PubMed  CAS  Google Scholar 

  13. Tzareva, N. V., Makhno, V. I., and Boni, I. V. (1994) Ribosome-messenger recognition in the absence of the Shine-Dalgarno interactions. FEBES Lett. 337, 189–194.

    Article  CAS  Google Scholar 

  14. Hüttenhofer, A. and Noller, H. F. (1994) Footprinting mRNA-ribosome complexes with chemical probes. EMBO J. 13, 3892–3901.

    PubMed  Google Scholar 

  15. Schaefer, E. M., Hartz, D., Gold, L., and Simoni, R. D. (1989) Ribosome-binding sites and RNA-processing sites in the transcript of the Escherichia coli unc operon. J. Bacteriol. 171, 3901–3908.

    PubMed  CAS  Google Scholar 

  16. Schneppe, B., Deckers-Hebestreit, G., McCarthy, J. E. G., and Altendorf, K. (1991) Translation of the first gene of the Escherichia coli unc operon: selection of the start codon and control of initiation efficiency. J. Biol. Chem. 266, 21,090–21,098.

    PubMed  CAS  Google Scholar 

  17. Winter, R. B., Morrissey, L., Gauss, P., Gold, L., Hsu, T., and Karam, J. (1987) Bacteriophage T4 RegA protein binds to mRNAs and prevents translation initiation. Proc. Natl. Acad. Sci. USA. 84, 7822–7826.

    Article  PubMed  CAS  Google Scholar 

  18. Blasi, U., Nam, K., Hartz, D., Gold, L., and Young, R. (1989) Dual translational initiation sites control function of the lambda S gene. EMBO J. 8, 3501–3510.

    PubMed  CAS  Google Scholar 

  19. McPheeters, D. S., Christensen, A., Young, E., Stormo, G. D., and Gold, L. (1986) Translational regulation of expression of the bacteriophage T4 lysozyme gene. Nucleic Acids Res. 14, 5813–5826.

    Article  PubMed  CAS  Google Scholar 

  20. McPheeters, D. S., Stormo, G. D., and Gold, L. (1988) Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. J. Mol. Biol. 201, 517–535.

    Article  PubMed  CAS  Google Scholar 

  21. Nam, K., Blasi, U., Zagotta, M. T., and Young, R. (1990) Conservation of a dual-start motif in P22 lysis gene regulation. J. Bacteriol. 172, 204–211.

    PubMed  CAS  Google Scholar 

  22. Spedding, G. and Draper, D. E. (1993) Allosteric mechanism for translational repression in the Escherichia coli alpha operon. Proc. Natl. Acad. Sci. USA. 90, 4399–4403.

    Article  PubMed  CAS  Google Scholar 

  23. Spedding, G., Gluick, G., and Draper, D. E. (1993) Ribosome initiation complex formation with the pseudoknotted alpha operon messenger RNA. J. Mol. Biol. 229, 609–622.

    Article  PubMed  CAS  Google Scholar 

  24. Philippe, C., Eyermann, F., Benard, L., Portier, C., Ehresmann, B., and Ehresmann, C. (1993) Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. Proc. Natl. Acad. Sci. USA. 90, 4394–4398.

    Article  PubMed  CAS  Google Scholar 

  25. Brunel, C., Romby, P., Moine, H., Caillet, J., Grunberg-Manago, M., Springer, M., Ehresmann, B., and Ehresmann, C. (1993) Threonyl-tRNA synthetase gene: structural and functional importance of the hrS operator domains. Biochimie. 75, 1167–1179.

    Article  PubMed  CAS  Google Scholar 

  26. Philippe, C., Benard, L., Eyermann, F., Cachia, C., Kirillov, S. V., Portier, C., Ehresmann, B., and Ehresmann, C. (1994) Structural elements of rpsO mRNA involved in the modulation of translational initiation and regulation of E. coli ribosomal protein S15. Nucl. Acids Res. 22, 2538–2546.

    Article  PubMed  CAS  Google Scholar 

  27. Richter-Dahlfors, A. A., Ravnum, S., and Andersson, D. I. (1994) Vitamin B12 repression of the cob operon in Salmonella typhimurium translational control of the cbiA gene. Mol. Microbiol. 13, 541–553.

    Article  PubMed  CAS  Google Scholar 

  28. Inoue, T. and Cech, T. R. (1985) Secondary structure of the circular form of the tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc. Natl. Acad. Sci. USA. 82, 648–652.

    Article  PubMed  CAS  Google Scholar 

  29. Moazed, D., Stern, S., and Noller, H. F. (1986) Rapid chemical probing of conformation in 16S ribosomal RNA and 30S ribosomal subunits using primer extension. J. Mol. Biol. 187, 399–416.

    Article  PubMed  CAS  Google Scholar 

  30. Tuerk, C., Gauss, P., Thermes, C., Groebe, O. R., Gayle, M., Guild, N., Stormo, G., O’Aubenton-Carafa, Y., Uhlenbeck, O. C., Tinoco, I., Brody, E. N., and Gold, L. (1988) CUUCGG hairpins extraordinarily stable RNA secondary structures associated with various biochemical processes. Proc. Natl. Acad. Sci. USA. 85, 1364–1368.

    Article  PubMed  CAS  Google Scholar 

  31. Altuvia, S., Kornitzer, D., Teff, D., and Oppenheim, A. B. (1989) Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J. Mol. Biol. 210, 265–280.

    Article  PubMed  CAS  Google Scholar 

  32. Blomberg, P., Engdahl, H. M., Malmgren, C., Romby, P., and Wagner, E. G. H. (1994) Replication control of plasmid R1 disruption of an inhibitory RNA structure that sequesters the repA ribosome-binding site tap-independent synthesis. Mol. Microbiol. 12, 49–60.

    Article  PubMed  CAS  Google Scholar 

  33. Koo, J. S. and Spremulli, L. L. (1994) Effect of the secondary structure in the Euglena gracilis chloroplast ribulose-bisphosphate carboxylase/oxygenase messenger RNA on translational initiation. J. Biol. Chem. 269, 7501–7508.

    PubMed  CAS  Google Scholar 

  34. DeBellis, D., Liveris, D., Gros, D., Ringquist, S., and Schwartz, I. (1992) Structure-function analysis of Escherichia coli translation initiation factor IF3: tyrosine 107 and lysine 110 are required for ribosome binding. Biochemistry. 32, 7172–7180.

    Google Scholar 

  35. Ringquist, S., Schneider, D., Gibson, T., Baron, C., Bock, A., and Gold, L. (1994) Recognition of the mRNA selenocysteine insertion sequence by the specialized translational elongation factor SelB. Genes Devel. 8, 376–385.

    Article  PubMed  CAS  Google Scholar 

  36. Franzetti, B., Carol, P., and Mache, R. (1992) Characterization and RNA-binding properties of a chloroplast S1-like ribosomal protein. J. Biol. Chem. 267, 19,075–19,081.

    PubMed  CAS  Google Scholar 

  37. Harrell, C. M., McKenzie, A. R., Patino, M. M., Walden, W. E., and Theil, E. C. (1991) Ferritin mRNA: interactions of iron regulatory element with translational regulator protein P-90 and the effect on base-paired flanking regions. Proc. Natl. Acad. Sci. USA. 88, 4166–4170.

    Article  PubMed  CAS  Google Scholar 

  38. Gold, L. (1988) Posttranscriptional regulatory mechanisms in Escherichia coli. Annu. Rev. Biochem. 57, 199–233.

    Article  PubMed  CAS  Google Scholar 

  39. Lang, V., Gualerzi, C., and McCarthy, J. (1989) Ribosomal affinity and translational initiation in Escherichia coli in vitro investigations using translational initiation regions of differing efficiencies from the atp operon. J. Mol. Biol. 210, 659–663.

    Article  PubMed  CAS  Google Scholar 

  40. Gross, G., Mielke, C., Hollatz, I., Blocker, H., and Frank, R. (1990) RNA primary sequence or secondary structure in the translational initiation region controls expression of two variant interferon-β genes in Escherichia coli. J. Biol. Chem. 265, 17,627–17,636.

    PubMed  CAS  Google Scholar 

  41. Ma, C. and Simons, R. W. (1990) The IS10 antisense RNA blocks ribosome binding at the transposase translation initiation site. EMBO J. 9, 1267–1274.

    PubMed  CAS  Google Scholar 

  42. Moine, H., Romby, P., Springer, M., Grunberg-Manago, M., Ebel, J-P., Ehresmann, B., and Ehresmann, C. (1990) Escherichia coli threonyl-tRNA synthetase and tRNAThr modulate the binding of the ribosome to the translational initiation site of the thrS mRNA. J. Mol. Biol. 216, 299–310.

    Article  PubMed  CAS  Google Scholar 

  43. Prescott, C. D. and Goringer, H. U. (1990) A single mutation in 16S rRNA that affects mRNA binding and translation-termination. Nucleic Acids Res. 18, 5381–5390.

    Article  PubMed  CAS  Google Scholar 

  44. Unnithan, S., Green, L., Morrissey, L, Binkley, J., Singer, B., Karam, J., and Gold, L. (1991) Binding of the bacteriophage T4 regA protein to mRNA targets an initiator AUG is required. Nucleic Acids Res. 18, 7083–7092.

    Article  Google Scholar 

  45. Baumeister, R., Flache, P., Melefors, O., von Gabain, A., and Hillen, W. (1991) Lack of a 5′ non-coding region in Tn1721 encoded tetR mRNA is associated with a low efficiency of translation and a short half-life in Escherichia coli. Nucleic Acids Res. 19, 4595–4600.

    Article  PubMed  CAS  Google Scholar 

  46. Kim, J., Gamble-Klein, P., and Mullet, J. E. (1991) Ribosomes pause at specific sites during synthesis of membrane-bound chloroplast reaction center protein D1. J. Biol. Chem. 266, 14,931–14,938.

    PubMed  CAS  Google Scholar 

  47. Kim, J., Gamble-Klein, P., and Muttet, J. E. (1994) Synthesis and turnover of photosystem II reaction center protein D1. J. Biol. Chem. 269, 17,918–17,923.

    PubMed  CAS  Google Scholar 

  48. Kim, J., Eichacker, L. A., Rudiger, W., and Mullet, J. E. (1994) Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins p700 and D1 by increasing apoprotein stability. Plant Physiol. 104, 907–916.

    Article  PubMed  CAS  Google Scholar 

  49. Shabarov, Z. A., Merenkova, I. N., Oretskaya, T. S., Sokolova, N. I., Skripkin, E. A., Alexeyeva, E. V., Balakin, A. G., and Bogdanov, A. A. (1991) Chemical ligation of DNA: the first non-enzymatic assembly of a biologically active gene. Nucleic Acids Res. 19, 4247–4251.

    Article  Google Scholar 

  50. Anthony, D. D. and Merrick, W. C. (1992) Analysis of 40S and 80S complexes with mRNA as measured by sucrose density gradients and primer extension inhibition. J. Biol. Chem. 267, 1554–1562.

    PubMed  CAS  Google Scholar 

  51. Romby, P., Brunel, C., Caillet, J., Springer, M., Grunberg-Manago, M., Westhof, E., Ehresmann, C., and Ehresmann, B. (1992) Molecular mimicry in translational control of E. coli threonyl-tRNA synthetase gene: competitive inhibition in tRNA aminoacylation and operator-repressor recognition switch using tRNA identity rules. Nucleic Acids Res. 20, 5633–5640.

    Article  PubMed  CAS  Google Scholar 

  52. Milligan, J. F., Groebe, O. R., Witherell, G. W., and Uhlenbeck, O. C. (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798.

    Article  PubMed  CAS  Google Scholar 

  53. Kenney, J. W., Fanning, T. G., Lambert, T. G., and Traut, R. R. (1979) The subunit interphase of the Escherichia coli ribosome. Crosslinking of 30S protein S9 to proteins of the 50S subunit. J. Mol. Biol. 135, 151–170.

    Article  Google Scholar 

  54. Muralikrishna, P. and Wickstrom, E. (1989) Inducible high expression of the Escherichia coli infC gene subcloned behind a bacteriophage T7 promoter. Gene 80, 369–374.

    Article  PubMed  CAS  Google Scholar 

  55. Maniatis, T., Jeffrey, A., and Kleid, D. G. (1975) Nucleotide sequence of the right-ward operator of phage λ. Proc. Natl. Acad. Sci. USA. 72, 1184–1188.

    Article  PubMed  CAS  Google Scholar 

  56. Ringquist, S., Shinedling, S., Barrick, D., Green, L., Binkley, J., Stormo, G. D., and Gold, L. (1992) Translation inhibition in Escherichia coli sequences within the ribosome-binding site. Mol. Microbiol. 6, 1219–1229.

    Article  PubMed  CAS  Google Scholar 

  57. Shine, J. and Dalgarno, L. (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA. 71, 1342–1346.

    Article  PubMed  CAS  Google Scholar 

  58. Steitz, J. A. and Jakes, K. (1975) How ribosomes select initiator regions in mRNA base pair formation between the 3′ terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc. Natl. Acad. Sci. USA. 72, 4734–4738.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Ringquist, S., Gold, L. (1998). Toeprinting Assays. In: Martin, R. (eds) Protein Synthesis. Methods in Molecular Biology, vol 77. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-397-X:283

Download citation

  • DOI: https://doi.org/10.1385/0-89603-397-X:283

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-397-9

  • Online ISBN: 978-1-59259-563-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics