Combined lmmunocytochemistry and PRINS DNA Synthesis for Simultaneous Detection of Phenotypic and Genomic Parameters in Cells

  • Ernst J. M. Speel
  • Diane Lawson
  • Frans C. S. Ramaekers
  • John R. Gosden
  • Anton H. N. Hopman
Part of the Methods in Molecular Biology™ book series (MIMB, volume 71)

Abstract

Primed in situ (PRINS) labeling has become an alternative to in situ hybridization (ISH) for the localization of nucleic acid sequences in cell (1, 2, 3, 4) and tissue preparations (5; see also  Chapter 5). In the PRINS method, an unlabeled primer (restriction fragment, PCR product, or oligonucleotide) is annealed to its complementary target sequence in situ. The primer serves as an initiation site for in situ chain elongation using a thermostable DNA polymerase and labeled nucleotides, which can be detected directly by fluorescence microscopy, such as fluorochrome-labeled dNTPs, or indirectly using, e.g., biotin- or digoxigenin-dUTP and the application of fluorochrome-conjugated avidin or antibody molecules (3,6,7). The detection limit of the PRINS technique appears to be on the order of low-copy sequences (3,8).

Keywords

Acetone Albumin EDTA Citrate Rubber 

References

  1. 1.
    Bains, M. A., Agarwal, R., Pringle, J. H., Hutchinson, R. M., and Lauder, I. (1993) Flow cytometric quantitation of sequence-specific mRNA in hemapoietic cell suspensions by primer-induced in situ (PRINS) fluorescent nucleotide labeling. Exp. Cell Res. 208, 321–326.PubMedCrossRefGoogle Scholar
  2. 2.
    Koch, J., Mogensen, J., Pedersen, S., Fischer, H., Hindkjær, S., Kolvraa, S., and Bolund, L. (1992) Fast one-step procedure for the detection of nucleic acids in situ by primer-induced sequence-specific labeling with fluorescein-12-dUTP. Cytogenet. Cell Genet. 60, 1–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Gosden, J. and Lawson, D. (1994) Rapid chromosome identification by oligonucleotide-primed in situ DNA synthesis (PRINS). Hum. Mol. Genet 3, 931–936.PubMedCrossRefGoogle Scholar
  4. 4.
    Pellestor, F., Girardet, A., Lefort, G., Andréo, B., and Charlieu, J. P. (1995) PRINS as a method for rapid chromosomal labeling of human spermatozoa. Mol. Reprod. Dev. 40, 333–337.PubMedCrossRefGoogle Scholar
  5. 5.
    Speel, E. J. M., Lawson, D., Ramaekers, F. C. S., Gosden, J. R., and Hopman, A. H. N. (1996) Rapid brightfield detection of oligonucleotide primed in situ (PRINS) labeled DNA in chromosome preparations and frozen tissue sections. Biotechniques 20, 226–234.PubMedGoogle Scholar
  6. 6.
    Hindkjær, J., Koch, J., Terkelsen, C., Brandt, C. A., Kölvraa, S., and Bolund, L. (1994) Fast, sensitive multicolor detection of nucleic acids in situ by primed in situ labeling (PRINS). Cytogenet. Cell Genet. 66, 152–154.PubMedCrossRefGoogle Scholar
  7. 7.
    Speel, E. J. M., Lawson, D., Hopman, A. H. N., and Gosden, J. (1995) Multi-PRINS: multiple sequential oligonucleotide primed in situ DNA synthesis reactions label specific chromosomes and produce bands. Hum. Genet. 95, 29–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Abbo, S., Dunford, R. P., Miller, T. E., Reader, S. M., and King, I. P. (1993) Primer-mediated in situ detection of the B-hordein gene cluster on barley chromosome 1H. Proc. Natl. Acad. Sci. USA 90, 11,821–11,824.PubMedCrossRefGoogle Scholar
  9. 9.
    Speel, E. J. M., Ramaekers, F. C. S., and Hopman, A. H. N. (1995) Cytochemical detection systems for in situ hybridization, and the combination with immunocytochemistry. Histochem. J. 21, 833–858.Google Scholar
  10. 10.
    Speel, E. J. M., Herbergs, J., Ramaekers, F. C. S., and Hopman, A. H. N. (1994) Combined immunocytochemistry and fluorescence in situ hybridization for simultaneous tricolor detection of cell cycle, genomic, and phenotypic parameters of tumor cells. J. Histochem. Cytochem. 42, 961–966.PubMedGoogle Scholar
  11. 11.
    Glaser, T., Housman, D., Lewis, W. H., Gerhard, D., and Jones, C. (1989) A fine-structure deletion map of chromosome 11p: analysis of J1 series hybrids. Somatic Cell Mol. Genet. 15, 477–501.CrossRefGoogle Scholar
  12. 12.
    Boerman, O. C., Mijnheere, E. P., Broers, J. L. V., Vooijs, G. P., and Ramaekers, F. C. S. (1991) Biodistribution of a monoclonal antibody (RNL-1) against the neural cell adhesion molecule (NCAM) in athymic mice bearing human small-cell lung-cancer xenografts. Int. J. Cancer 48, 457–462.PubMedCrossRefGoogle Scholar
  13. 13.
    Dorm, J. R., Inglis, J. D., and Porteous, D. J. (1989) Selection for precise targeting of a dominant marker by homologous recombination. Science 243, 1357–1360.CrossRefGoogle Scholar
  14. 14.
    Carney, D. N., Gazdar, A. F., Bepler, G., Guccion, J. G., Marangos, P. J., Moody, T. W., Zweig, M. H., and Minna, J. D. (1985) Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res. 45, 2913–2923.PubMedGoogle Scholar
  15. 15.
    Bobrow, M. N., Harris, T. D., Shaughnessy, K. J., and Litt, G. J. (1989) Catalyzed reporter deposition, a novel method of signal amplification: Amplification to immunoassays. J. Immunol. Methods 125, 279–285.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc, Totowa, NJ 1997

Authors and Affiliations

  • Ernst J. M. Speel
    • 1
  • Diane Lawson
    • 2
  • Frans C. S. Ramaekers
    • 1
  • John R. Gosden
    • 2
  • Anton H. N. Hopman
    • 1
  1. 1.Department of Molecular Cell Biology and GeneticsUniversity of LimburgMaastrichtThe Netherlands
  2. 2.Medical Research Council, Human Genetics UnitWestern General Hospital EdinburghScotland

Personalised recommendations