Skip to main content

Synaptoneurosomes

A Preparation for Studying Subhippocampal GABAA Receptor Activity

  • Protocol
Neurotransmitter Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 72))

  • 2336 Accesses

Abstract

Although synaptosomes are a widely accepted preparation for studying regulation of transmitter release at the isolated presynaptic level (see also Chapter 4), they are not suited for the investigation of synaptic events mediated by postsynaptic mechanisms. In the past, isolated membrane fractions enriched in postsynaptic densities have been used for this purpose (1). However, this fraction of postsynaptic densities is not appropriate to study receptor-mediated signal transduction because of the absence of intact sealed structures in this preparation. For this reason, a subcellular preparation enriched in resealed presynaptic structures (synaptosomes) with attached sealed postsynaptic entities (neurosomes) has been developed. These composite structures are called synaptoneurosomes. Biochemical characterization of synaptoneurosome preparations has revealed the presence of a number of receptor-mediated properties and a maintained electrochemical gradient (2,3). Since its first description, this preparation has been used for the investigation of numerous phenomena, including neurotransmitter release (4), inositol phospholipid turnover (5,6), CAMP accumulation (2), as well as in functional studies of various neurotransmitter receptors (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siekevitz, P. (1981) Isolation of postsynaptic densities from cerebral cortex. Res. Meth. Neurochem. 5, 75–89.

    CAS  Google Scholar 

  2. Hollingsworth, E. B., McNeal, E. T., Burton, J. L., Williams, R. J., Daly, J. W., and Creveling, C. R. (1985) Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3′,5′-monophosphate-generating systems, receptors, and enzymes. J. Neurosci. 5, 2240–2253.

    PubMed  CAS  Google Scholar 

  3. Schwartz, R. D., Jackson, J. A., Weigert, D., Skolnick, P., and Paul, S. M. (1985) GABA-and barbiturate-stimulated chloride efflux from rat brain synaptoneurosomes. J. Neurosci. 5, 2963–2970.

    PubMed  CAS  Google Scholar 

  4. Ebstein, R. P., Seamon, K., Creveling, C. R., and Daly, J. W. (1982) Release of norepinephrine from brain vesicular preparations: effects of an adenylate cyclase activator, forskolin, and a phosphodiesterase inhibitor. Cell Mol. Neurobiol. 2, 179–192.

    Article  PubMed  CAS  Google Scholar 

  5. Chandler, J. L. and Crews, F. T. (1990) Calcium-versus G protein-mediated phosphoinositide hydrolysis in rat cerebral cortical synaptoneurosomes. J. Neurochem. 55, 1022–1030.

    Article  PubMed  CAS  Google Scholar 

  6. Gusovsky, F. and Daly, J. W. (1988) Formation of inositol phosphates in synaptoneurosomes of guinea pig brain: stimulatory effects of receptor agonists, sodium channel agents and sodium ionophores. Neuropharmacology 27, 95–105.

    Article  PubMed  CAS  Google Scholar 

  7. Harris, R. A. and Allan, A. M. (1985) Functional coupling of γ-amino-butyric acid receptor in chloride channels in brain membranes. Science 228, 1108,1109.

    Article  PubMed  CAS  Google Scholar 

  8. Schofield, P. R. (1989) The GABAA receptor: molecular biology reveals a complex picture. TIPS 10, 476–478.

    PubMed  CAS  Google Scholar 

  9. Persohn, E., Malherbe, P., and Richards, J. G. (1992) Comparative molecular neuroanatomy of cloned GABAA receptor subunits in the rat CNS. J. Comp. Neurol. 326, 193–216.

    Article  PubMed  CAS  Google Scholar 

  10. Schónrock, B. and Bormann, J. (1993) Functional heterogeneity of hippocampal GABAA receptors. Eur. J. Neurosci. 5, 1042–1049.

    Article  PubMed  Google Scholar 

  11. Lopes da Silva, F. H., Kamphuis, W., and Wadman, W. J. (1992) Epileptogenesis as a plastic phenomenon of the brain, a short review. Acta Neurol. Scan. 86, 34–40.

    Article  Google Scholar 

  12. Kamphuis, W. and Lopes da Silva, F. H. (1990) The kindling model of epilepsy: the role of GABAergic inhibition. Neurosci. Res. Comm. 6, 1–10.

    CAS  Google Scholar 

  13. Titulaer, M. N. G., Kamphuis, W., Pool, C. W., van Heerikhuize, J. J., and Lopes da Silva, F. H. (1994) Kindling induces time-dependent and regional specific changes in the [3H]muscimol binding in the rat hippocampus: a quantitative autoradiographic study. Neuroscience 59, 817–826.

    Article  PubMed  CAS  Google Scholar 

  14. Titulaer, M. N. G., Ghijsen, W. E. J. M., Kamphuis, W., De Rijk, T. C., and Lopes da Silva, F. H. (1995) Opposite changes in GABAA receptor function in the CA1–3 area and fascia dentata of kindled rat hippocampus. J. Neurochem. 64, 2615–2621.

    Article  PubMed  CAS  Google Scholar 

  15. Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–252.

    Article  PubMed  CAS  Google Scholar 

  16. Schwartz, R. D., Suzdak, P. D., and Paul, S. M. (1986) γ-Aminobutyrtc (GABA)-and barbiturate-mediated 36Cl− uptake in rat brain synaptoneurosomes evidence for rapid desensitization of the GABA receptor-coupled chloride ion channel. Mol. Pharm. 30, 419–426.

    CAS  Google Scholar 

  17. Verheul, H. B., de Leeuw, F.-E., Scholten, G., Tulleken, C. A. F., Lopes da Silva, F. H., and Ghijsen, W. E. J. M. (1993) GABAA receptor function in the early period after transient forebrain ischaemia in the rat. Eur. J. Neurosci. 5, 955–960.

    Article  PubMed  CAS  Google Scholar 

  18. Cupello, A. and Rapallino, M. V. (1992) Components of basal and GABA activated 36Cl− influx in rat cerebral cortex microsacs. Int. J. Neurosci. 62, 35–43.

    Article  PubMed  CAS  Google Scholar 

  19. Thallmann, R. H. and Hershkowitz, N. (1985) Some factors that influence the decrement in the response to GABA during its continuous iontophoretic application to hippocampal neurons. Brain Res. 342, 219–233.

    Article  Google Scholar 

  20. Engblom, A. C. and Åkerman, K. E. O. (1991) Effect of ethanol on γ-amino-butyric acid and glycine receptor-coupled Cl− fluxes in rat brain synaptoneurosomes. J. Neurochem., 57, 384–390.

    Article  PubMed  CAS  Google Scholar 

  21. Starke, K, Gothert, M., and Kilbinger, H. (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 69, 864–989.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Titulaer, M.N.G., Ghijsen, W.E.J.M. (1997). Synaptoneurosomes. In: Rayne, R.C. (eds) Neurotransmitter Methods. Methods in Molecular Biology, vol 72. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-394-5:49

Download citation

  • DOI: https://doi.org/10.1385/0-89603-394-5:49

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-394-8

  • Online ISBN: 978-1-59259-558-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics