Skip to main content

Phage Display of Peptide Libraries on Protein Scaffolds

  • Protocol
Combinatorial Peptide Library Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 87))

  • 1658 Accesses

Abstract

Early examples of phage-display hbrarres were used to identify short, linear peptide eprtopes that could bind an antrbody or other target (1,2). Phage display offers a means not only to identify such peptides, but also to select high-affinity protein variants with improved affinity and specrftcity, by randomrzation of specrfrc residues within their binding eprtopes for receptors or other target molecules. Examples of such affinity- or specificity-improved proteins have included human growth hormone, zinc fingers, protease inhibitors, ANP., and antibodies (reviewed in 3,4). Since the btoactivity of such molecules is related to their fractional occupancy of a receptor or other binding target, higher-affinity and higher-specrficity variants have the potential to improve the effectiveness of and lower the dosage required for these molecules in therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parmley S F and Smith G P (1988) Antibody-selectable filamentous fd phage vectors· affinity purification of target genes. Gene 73, 305–318

    Article  PubMed  CAS  Google Scholar 

  2. Devlin J. J., Panganiban L C., and Devlin P. E (1990) Random peptide libraries a source of specific protein binding molecules Sczence 249, 404–406

    Article  CAS  Google Scholar 

  3. Wells J. A and Lowman H B (1992) Rapid evolution of peptlde and protein binding properties in vitro. Curr. Opm. Struct. Blol. 2, 597–604.

    Article  CAS  Google Scholar 

  4. Clackson T. and Wells J A (1994) In vitro selection from protein and peptide libraries. Trends Blotechnol. 12, 173–184

    Article  CAS  Google Scholar 

  5. Lowman H B., Bass S H., Simpson N., and Wells J A. (1991) Selecting high-affinity binding proteins by monovalent phage display Biochemistry 30, 10,832–10,838

    Article  PubMed  CAS  Google Scholar 

  6. Lowman H B and Wells J. A. (1993) Affinity maturation of human growth hormone by monovalent phage display. J Mol. Biol 234, 564–578

    Article  PubMed  CAS  Google Scholar 

  7. Roberts B.L., Markland W., Ley A. C., Kent R.B., Whlte D W., Guterman S.K., and Ladner R. C. (1992) Directed evolution of a protein Selection of potent neu-trophil elastase inhibitors displayed on M13 fusion phage Proc Natl. Acad Sci USA 89, 2429–2433

    Article  PubMed  CAS  Google Scholar 

  8. Denms M S. and Lazarus R. A. (1994) Kunitz domain inhibltors of tissue factor-factor VIIa. II Potent and specific inhibitors by competltlve phage selection J. Biol. Chem 269, 22,137–22,144.

    Google Scholar 

  9. Hawkins R E., Russell S. J., and Winter G (1992) Selection of phage antlbodles by binding affinity J Mel Biol 220, 889–896

    Article  Google Scholar 

  10. Barbas C F. III, Hu D., Dunlop N., Sawyer L., Cababa D., Hendry R M., Nara P L., and Burton D. R (1994) In vitro evolution of a neutrahzing human antibody to human immunodeflclency virus type 1 to enhance affmlty and broaden strain cross-reactlvlty Proc Natl Acad. Sci. USA 91, 3809–3813

    Article  PubMed  CAS  Google Scholar 

  11. Bass S., Greene R., and Wells J A. (1990) Hormone phage An enrichment method for variant proteins with altered binding properties Protezns 8, 309–314

    Article  CAS  Google Scholar 

  12. Cwirla S E., Peters E A., Barrett R. W., and Dower W J. (1990) Peptldes on phage: A vast hbrary of peptldes for identifying hgands. Proc. Natl. Acad. Scl. USA 87, 6378–6382

    Article  CAS  Google Scholar 

  13. Barbas C. F III, Kang A. S., Lerner R A., and Benkovic S J. (1991) Assembly of combinatorlal antibody libraries on phage surfaces. the gene III site Proc. Nutl Acad. Sci. USA 88, 7978–7982

    Article  CAS  Google Scholar 

  14. Stratton-Thomas J R., Min H Y., Kaufman S. E., Chiu C Y., Mullenbach G. T., and Rosenberg S. (1995) Yeast expression and phagemld display of the human urokinase plasminogen activator epldermal growth factor-like domam Protein Eng. 8, 463–470

    Article  PubMed  CAS  Google Scholar 

  15. Lowman H B. and Wells J A (1991) Monovalent phage display· a method for selecting variant proteins from random librarles Methods 3, 205–216

    Article  CAS  Google Scholar 

  16. Cunningham B. C., Lowe D G., Li B., Bennett B D., and Wells J. A (1994) Production of an atrlal natnuretic peptide variant that is specific for type A receptor. EMBO J. 13, 2508–2515

    PubMed  CAS  Google Scholar 

  17. Kunkel T A., Bebenek K., and McClary J. (1991) Efficient site-directed mutagenesis using uracll-containing DNA Methods Enzymol 204, 125–139

    Article  PubMed  CAS  Google Scholar 

  18. Messing J. (1983) New M 13 Vectors forCloning Methods Enzymol 101, 20–78

    Article  PubMed  CAS  Google Scholar 

  19. Vlerra J and Messing J (1987) Production of single-stranded plasmid DNA Methods Enzymol. 153, 3–11.

    Article  Google Scholar 

  20. Bullock W. O., Fernandez J M., and Short J M (1987) XLl-Blue A high efficiency plasmxd transforming recA Escherrchta coli strain with beta-galactostdase selection Bzotechnzques 5, 376–378

    CAS  Google Scholar 

  21. Arkin A P and Youvan D C (1992) An algorithm for protem engmeering Simulations of recursive ensemble mutagenesis Proc Natl. Acad Sci USA 89, 7811–7815.

    Article  PubMed  CAS  Google Scholar 

  22. Wu D Y., Ugozzoli L., Pal B K., Qran J., and Wallace R B.(1991) The effect of temperature and length on the specrfrcity and efficiency of amplification by the polymerase chain reaction DNA Cell Bzol. 10, 233–238

    Article  CAS  Google Scholar 

  23. Matthews D J and Wells J. A (1993) Substrate phage selection of protease substrates by monovalent phage dtsplay Science 260, 1113–1117

    Article  PubMed  CAS  Google Scholar 

  24. Stemmer W C (1994) Rapid evolution of a protein in vitro by DNA shuffling Nature 370, 389–391.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lowman, H.B. (1998). Phage Display of Peptide Libraries on Protein Scaffolds. In: Cabilly, S. (eds) Combinatorial Peptide Library Protocols. Methods in Molecular Biology™, vol 87. Humana Press. https://doi.org/10.1385/0-89603-392-9:249

Download citation

  • DOI: https://doi.org/10.1385/0-89603-392-9:249

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-392-4

  • Online ISBN: 978-1-59259-571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics