Skip to main content

The Basic Structure of Filamentous Phage and Its Use in the Display of Combinatorial Peptide Libraries

  • Protocol
Combinatorial Peptide Library Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 87))

  • 1554 Accesses

Abstract

The filamentous phage constitutes a large number of male-specific bacteriophage having similar shape, size, and lifecycle. The most studied phage are f1,fd,and M13, all of which Infect E colz cells through their F pill. This group of F-spectfic phage share 98% homology in their DNA sequence. Their nme coding genes (coding for ten proteins), as well as then two mtergenic regions, are ordered and oriented in the same way. The phage particle has a filamentous shape of 930-nm in length, a diameter of 6.5-nm, and contains a ssDNA of about 6400 bp, packaged within five coat proteins named pVII1, p111, pV1, pVI1, and pIX ( Fig. 1 ). The major coat protein, pVII1, wraps the phage DNA with 2800 of its copies arranged in a helical symmetry (1). When the phage DNA is elongated as a result of DNA insertion, the number of pVII1 copies mcreases to compensate for the increased length. (2,3). At the proximal end of the virion (the first to cross the membrane when the phage leaves the host cell), five copies of pVII and of pIX form a 30Å, plug structure. These are two small hydrophobic peptides, 33 and 32 kDa, respectively, that play a role in the early stages of phage assembly, where they serve as a nucleus for the subsequent deposition of pVII1 (Fig. 2) In their absence, almost no phage particles are formed (4,5). The distal end of the virion terminates with five copies of pIII and of pVI (68). These protems are required for terminating the deposition of pVIII during phage assembly and for anchoring the phage to the bacterium pili (5). Negative staining of phage particles shows that pII1 and pVI form a cylindrical shape with a pointed end, and pIII extends further as a thin protrusion (9).

A “fish scale” structure of filamentous phage. Symbols: O-library insertion sites; gray- hydrophobic surface; white- hydrophilic surface.

Assembly of the phage virion and its release from E. coli cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Day L.A., Marzec C J., Relsberg S. A., and Casadevall A (1988) DNA packaging in ftlamentous bacteriophages Annu. Rev Brophys. Blophys. Chem. 17, 509–539

    Article  CAS  Google Scholar 

  2. Glucksman M. J., Bhattacharjee S., and Makowskl L. (1992) Three-dimentional structure of a cloning vector, X-ray diffraction studies of filamentous bactertophage M13 at 7 Å resolution J. Mol. Blol. 226, 455–470

    Article  CAS  Google Scholar 

  3. Model P. and Russel M (1988) The Bacterzophage, vol 2 (Calender R., ed.), Plenum, New York

    Google Scholar 

  4. Lopez J. and Webster R. E (1983) Morphogenests of filamentous bacteriophage fl: Onentation of extrusion and production of polyphage Vzrology 127, 177–193

    Article  CAS  Google Scholar 

  5. Russel M. (1991) Filamentous phage assembly Mol. Mzcrobzol. 5, 1607–1613

    Article  CAS  Google Scholar 

  6. Slmons G F M., Veeneman G H., Konings R N H., Van Boom J. H., and Schoenmakers J G. G. (1981) Gene IV, gene VII and gene IX of phage M13 code for minor capstd proteins of the vu-ton. Proc. Natl. Acad Scz. USA 78, 4194–4198

    Article  Google Scholar 

  7. Makowskr L (1992) Terminating a macromolecular helix, Structural model for the minor proteins of bactertophage M13. J. Mol. Blol. 228, 885–898

    Article  Google Scholar 

  8. Makowskt L (1993) Structural constramts on the display of foreign peptides on ftlamentous bacteriophage Gene 128, 5–11

    Article  Google Scholar 

  9. Specthrre L., Bullitt E., Hormcht K., Model P., Russel M., and Makowskt L (1992) Construction of mtcrophage vartant of ftlamentous bacteriophage J Mol. Blol 228, 720–724

    Article  Google Scholar 

  10. Kazmterczak B. I., Mtelke D L., Russel M., and Model P. (1994) pIV, a ftlamentous phage protein that medtates phage export across the bacterial cell envelope, forms a multimer J. Mol. Bzol 238, 187–198

    Article  Google Scholar 

  11. Russel M (1993) Protein-protein mteactions during ftlamentous phage assembly J Mol. Biol. 231, 689–697

    Article  PubMed  CAS  Google Scholar 

  12. Armstrong J., Perham R N., and Walker J E (1981) Domain structure of bacteriophage fd adsorption protein FEBS Let? 135, 167–172

    Article  CAS  Google Scholar 

  13. Stengele I., Bross P., Graces x, Gtray J.,and Rasched I Dissection of funtional domains in phage Fd adsorption protein J. Mol Blol. 212, 143–149

    Google Scholar 

  14. Bradbury A and Cattaneo A. (1995) The use of phage display in neurobrology Trends Neurosci 18, 243–249

    Article  PubMed  CAS  Google Scholar 

  15. Smith G. P (1985) Ftlamentous fusion phage. novel expression vectors that dtsplayed cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  16. Parmley S F and Smith G P. (1988) Antibody-selectable ftlamentous fd phage vectors affunty purtftcation of target genes Gene 73, 305–318

    Article  PubMed  CAS  Google Scholar 

  17. de la Cruz V.F., Laa A A., and McCutchan T F (1988) Immungemcity and epitope mapping foreign sequences via a genetically engineered ftlamentous phage J.Blol.Chem. 263, 4318–4322.

    Google Scholar 

  18. Scott J K and Smith G. P. (1990) Searching for peptide bgands with an epitope library. Science 249, 386–390

    Article  PubMed  CAS  Google Scholar 

  19. Devlm J J., Pangamban L C., and Devlin P E (1990) Random peptrde librartes: A source of spectftc protein binding molecules Science 249, 404–406

    Article  Google Scholar 

  20. Cwtrla S. E., Peters E A., Barrett R W., and Dower W. J (1990) Peptides of phage. A vast library of peptides for identifying ltgads Proc. Natl Acad Scl. USA 87, 6378–6382

    Article  Google Scholar 

  21. Barbas, III C.F., Kang A. S., Lerner R. A., and Benkovic S.J (1991) Assembly of combinatorral antibody librartes on phage surfaces The gene III sue. Proc, Natl Acad Sci USA 88, 7978–7982

    Article  CAS  Google Scholar 

  22. Ntsstm A., Hoogenboom H R., Tomlmson I. M., Flynn G., Mrdgley C., Lane D., and Winter G. (1994) Antibody fragments from a’ single pot’ phage display library as immunochemical reagents. EMBO J. 13, 692–698

    Google Scholar 

  23. Gram H., Strittmatter U., Lorenz M., Gluck D., and Zenke G. (1993) Phage display as a rapid gene expression system: production of btoactive cytokme-phage and generation of neutraltzing monoclonal antibodies J Immunol. Methods 161, 169–176

    CAS  Google Scholar 

  24. Robertson M. W. (1993) Phage and Escherzchia coh expression of the human htgh affinity immunoglobulm E receptor α-subumt ectodomain J. Biol. Chem. 268, 12,736–12,743

    PubMed  CAS  Google Scholar 

  25. Scarselli E., Esposito G., and Trabom C. (1993) Receptor phage. Display of functional domams of the human high affimty IgE receptor on the M13 phage surface. FEBS Lett. 329, 223–226.

    Article  PubMed  CAS  Google Scholar 

  26. Swimmer C., Lehar S M., McCafferty J., Chiswell D J., Blattler W A., Guild B C. (1992) Phage display of ncm B chain and its single binding domams system for screening galactose-binding mutants Proc. Natl. Acad. Scz. USA 89, 3756–3760.

    Article  CAS  Google Scholar 

  27. Pannekoek H., Van MeiJer M., Schleef R R., Loskutoff D. J., and Barbas C F III. (1993) Functional display of human plasminogen-activator inhibitor 1 (PAI-1) on phages. novel perspectives for structure-function analysis by error-prone DNA synthesis. Gene 128, 135–140.

    Article  PubMed  CAS  Google Scholar 

  28. Roberts B L., Markland W., Ley A C., Kent R. B., White D. W., Guterman S. K., and Ladner R. C (1992) Directed evolution of a protein: selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage Proc. Natl Acad. Sci USA 89, 2429–2433.

    Article  PubMed  CAS  Google Scholar 

  29. Rebar E J and Pabo C O (1994) Zinc finger phage affinity selection of fingers with new DNA-binding specificities Science 263, 671–673

    Article  PubMed  CAS  Google Scholar 

  30. McCafferty J., Jackson R. H., and Chiswell D J (1991) Phage enzymes: expression and affnuty chromatography of functional alkaline phosphatase on the surface of bacteriophage. Protein Eng. 4, 955–961

    Article  PubMed  CAS  Google Scholar 

  31. Corey D. R., Shiau A. K., Yang Q., Janowski B. A., and Craik C S. (1993) Trypsm display on the surface of bacteriophage Gene 128, 129–134

    Article  PubMed  CAS  Google Scholar 

  32. Crameri R. and Suter M (1993) Display of biologically active proteins on the surface of filamentous phages: a cDNA cloning system for selection of functional gene products linked to the genetic mformation responsible for their production Gene 137, 69–75.

    Article  PubMed  CAS  Google Scholar 

  33. Gramatikoff K., Georgiev O., and Schaffner W. (1994) Direct mteraction rescue, a novel filamentous phage technique to study protein-protein mteractions Nucletc Acids Res 22, 5761–5762.

    Article  CAS  Google Scholar 

  34. Felci F. (1991) Selection of antibody hgands from a large library oligopeptides expressed on a multivalent exposition vector. J. lMol Bzol. 222, 301–310

    Google Scholar 

  35. Greenwood J., Willis A E., and Perham R. N. (1991) Multiple display of foreign peptides on a filamentous bacteriophage J. Mol. Biol. 220, 821–827

    Article  PubMed  CAS  Google Scholar 

  36. Smith P G. (1993) Surface display and peptide libraries Gene 128, 1,2.

    Google Scholar 

  37. Lowman H.B., Bass S H., Simpson N., and Wells J A. (1991) Selecting high-affinity binding proteins by monovalent phage display Biochemutry 30, 10,832–10,838.

    Article  CAS  Google Scholar 

  38. Kang A S., Barbas C F., Janda K D., Benkovic S J., and Lerner R A (1991) Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surface. Proc Natl Acad. Scl USA 88, 4363–4366

    Article  CAS  Google Scholar 

  39. Bass S., Greene R., and Wells.I. A (1990) Hormone phage An enrichment method for variant protems with altered binding properties Protems: Struct. Funct. Genet. 8, 309–314.

    Article  CAS  Google Scholar 

  40. Lowman H. B and Wells J A (1993) Affmlty maturation of human growth hormone by monovalent phage drsplay J. Mol. Bzol 234, 564–578

    Article  CAS  Google Scholar 

  41. Duenas M. and Borrebaeck C A. K (1994) Clonal selection and amplification of phage displayed antibodtes by linking antigen recognition and phage repllcation Biotechnology 12, 999–1002

    Article  PubMed  CAS  Google Scholar 

  42. Jespers L S., Messens J H., De Keyser A., Eeckhout D., Van Den Brande I., Gansemans Y.G., Lauwereys M J., Vlasuk G.P., and Stanssens P E (1995) Surface expression and ltgand-based selection of cDNA fused to filamentous phage gene VI. Biotechnology 13, 378–382

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Cabilly, S. (1998). The Basic Structure of Filamentous Phage and Its Use in the Display of Combinatorial Peptide Libraries. In: Cabilly, S. (eds) Combinatorial Peptide Library Protocols. Methods in Molecular Biology™, vol 87. Humana Press. https://doi.org/10.1385/0-89603-392-9:129

Download citation

  • DOI: https://doi.org/10.1385/0-89603-392-9:129

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-392-4

  • Online ISBN: 978-1-59259-571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics