Advertisement

Identification of Peptide Ligands for the Antigen Binding Receptor Expressed on Human B-Cell Lymphomas

  • Markus F. Renschler
  • William J. Dower
  • Ronald Levy
Part of the Methods in Molecular Biology™ book series (MIMB, volume 87)

Abstract

B-cell lymphomas are malignancies of B-lymphocytes In most cases they express surface immunoglobulin receptors (sIgR) with an antigen binding site determined by the heavy and light chain variable regions. This antigen binding site of the sIgR is an ideal tumor marker since it is unique to the tumor cells and shared among all the tumor cells from each individual. It can thus be used as a target for immunotherapy. Indeed monoclonal antibodies raised against the antigen binding site (“idiotype”) of the Ig receptor can arrest the growth of lymphoma cells in vitro (1) and can induce complete tumor regressions and durable remissions in patients with lymphoma (2,3)

Keywords

ELISA Plate Hank Balance Salt Solution Peptide Ligand Laminar Flow Hood Antigen Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pennell C. and Scott D. (1986) Lymphoma models for B cell activation and tolerance. IV Growth inhibition by anti-Ig of CH31 and CH33 B lymphoma cells Eur J. Immunol. 16, 1577–1581.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller R A., Maloney D G., Warnke R., and Levy R. (1982) Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody N. Engl. J Med. 306, 517–522PubMedCrossRefGoogle Scholar
  3. 3.
    Maloney D G., Levy R., and Miller R. A (1992) Monoclonal anti-idiotype therapy of B cell lymphoma, in Biologic Therapy of Cancer Updates vol 2, number 6 (De Vita V T., Hellman S., and Rosenberg S A., eds.), Lippincott, Philadelphia, PA, pp 1–9Google Scholar
  4. 4.
    Scott J K and Smith G P (1990) Searching for peptide ligands with an epitope library Science 249, 386–390PubMedCrossRefGoogle Scholar
  5. 5.
    Oldenburg K R., Loganathan D., Goldstein I J., Schultz P G., and Gallop M. A. (1992) Peptide hgands for a sugar-binding protein isolated from a random peptide library Proc Natl Acad. Sci. USA 89, 5393–5397.PubMedCrossRefGoogle Scholar
  6. 6.
    Devlin J J., L.Panganiban L C., and Devlin P E (1990) Random peptide libraries: a source of specific protein binding molecules Science 249, 404–406PubMedCrossRefGoogle Scholar
  7. 7.
    Cwirla S E., Peters E A., Barrett R W., and Dower W J (1990) Peptides on phage A vast library of peptides for identifying hgands Proc Natl Acad. Sci. USA 87, 623–638.CrossRefGoogle Scholar
  8. 8.
    Blond E.S., Cwirla S E., Dower W J., Lipshutz R.J., Sprang S R., Sambrook J F., and Gething M J. (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP Cell. 75, 717–728.CrossRefGoogle Scholar
  9. 9.
    Renschler M F., Bhatt R R., Dower W J., and Levy R. (1994) Synthetic peptide hgands of the antigen binding receptor induce programmed cell death in a human B-cell lymphoma. Proc Natl. Acad. Sci. USA 91, 3623–3627PubMedCrossRefGoogle Scholar
  10. 10.
    Scott J. K., Loganathan D., Easley R B., Gong X., and Goldstein I. J (1992) A family of concanavalm A-binding peptides from a hexapeptide epitope library Proc Natl. Acad. Sci. USA 89, 5398–5402PubMedCrossRefGoogle Scholar
  11. 11.
    Dower W J and Cwirla S.E. (1994) Epitope mapping using libraries of random peptides displayed on phage, in Peptide Antigens (Wisdoms G. B., ed), IRL Press at Oxford University Press, Oxford, UK, pp 219–243.Google Scholar
  12. 12.
    Carroll W. L., Thielemans K., Dilley J., and Levy R. (1986) Mouse × human heterohybridomas as fusion partners with human B cell tumors J Immunol Methods 89, 61–72PubMedCrossRefGoogle Scholar
  13. 13.
    Oi V T and Herzenberg L A (1980) Immunoglobuhn-producing hybrid cell lines, in Selected Methods in Cellular Immunology (Mishell B B. and Shngis S M., eds), WH Freeman, San Francisco, pp. 368–370Google Scholar
  14. 14.
    Barrett R W., Cwirla S E., Ackerman M S., Olson A M., Peters E A., and Dower W. J. (1992) Selective enrichment and characterization of high affinity hgands from collections of random peptides on filamentous phage Anal. Bwchem. 204, 357–364.CrossRefGoogle Scholar
  15. 15.
    Sambrook J., Fntsch E F.,and Maniatis T (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Plainview, NYGoogle Scholar
  16. 16.
    Renschler M.F., Wada H G., Fok K S., and Levy R (1995) B-lymphoma cells are activated by peptide hgands of the antigen binding receptor or by anti-idiotypic antibody to induce extracellular acidification Cancer Research, 55, 5642–5647Google Scholar
  17. 17.
    Tam J P (1988) Synthetic peptide vaccine design Synthesis and properties of a high-density multiple antigenic peptide system. Proc. Natl Acad. Sci. USA 85, 5409–5413.PubMedCrossRefGoogle Scholar
  18. 18.
    Tam J.P and Lu Y A (1989) Vaccine engineering enhancement of immunogenicity of synthetic peptide vaccines related to hepatitis in chemically defined models consisting of T-and B-cell epitopes Proc Natl Acad. Sci. USA 86, 9084–9088.PubMedCrossRefGoogle Scholar
  19. 19.
    Vuist W. M J., Maloney D G., and Levy R. (1994) Lymphoma regression induced by monoclonal anti-idiotypic antibodies correlates with their ability to induce immunoglobulin signal transduction and is not prevented by tumor expression of high levels of BCL-2 protein Blood 83, 899–906PubMedGoogle Scholar
  20. 20.
    Schick M R., Nguyen V Q., and Levy S (1993) Anti-TAPA-1 antibodies induce protein tyrosine phosphorylation that is prevented by increasing mtracellular thiol levels J Immunol 151, 1918–1925PubMedGoogle Scholar
  21. 21.
    Cull M G., Miller J F., and Schatz P J. (1992) Screening for receptor hgands using large libraries of peptides linked to the C terminus of the lac repressor. Proc Natl. Acad Sci USA 89, 1865–1869PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • Markus F. Renschler
    • 1
  • William J. Dower
    • 2
  • Ronald Levy
    • 3
  1. 1.PharmacyclicsSunnyvale
  2. 2.Affimax Research InstitutePalo Alto
  3. 3.Division of OncologyStanford University Medical CenterStanford

Personalised recommendations