Generation of Multiuse Peptide Libraries for Functional Screenings

  • Channa K. Jayawickreme
  • Shiranthi P. Jayawickreme
  • Michael R. Lerner
Part of the Methods in Molecular Biology™ book series (MIMB, volume 87)


The range of applications for large-scale synthetic molecule libraries (1, 2, 3, 4, 5, 6, 7) can be expanded if the constituents can be liberated locally from their supporting matrix in a controlled manner so that fractions are available for multiple independent tests, free of interference from other constituents of the library. A method was developed to study the functional responses arlsing from individual constituent beads in a synthetic combinatorial peptide library by introducing the multiuse peptide library (MUPL) concept (8). In the MUPL method ( Fig. 1 ), peptides are liberated from their supports in a dry state so that the problem of signal interference caused by mixing of peptlde molecules, particularly agonists and antagonists, is avoided. In addition, the peptides are released rn a controlled manner so that fractions are available for repetitive screens, thus elimmating the need for iterative library analysis and resynthesis Since the liberated constituents are not constrained by the tethered linkers, the molecules are free to assume their native conformations. These unique features of an MUPL has enabled the use of large-scale synthetic molecule libraries for functional screening (8, 9, 10).
Fig. 1.

Schematic representation of the generation of multiuse peptide libraries.


Reaction Vessel Peptide Synthesis Peptide Library Polyethylene Sheet Functional Screening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Geysen H. M., Meloen R. H., and Barteling S. J (1984) Use of peptlde synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad Scl. USA 81, 3998–4002.CrossRefGoogle Scholar
  2. 2.
    Fodor S P A., Read J L., Pirrung M C., Stryer L., Lu A T., and Solas D. (1991) Lrght-directed, spatially addressable parallel chemical synthesis Science 251, 767–773PubMedCrossRefGoogle Scholar
  3. 3.
    Furka A., Sebestyen F., Asgedom M., and Dibo G (1991) General method for rapid synthesis of multicomponent peptide mrxtures Int J.Pept Protein Res. 37, 487–493.PubMedCrossRefGoogle Scholar
  4. 4.
    Lam K. S., Salmon S E., Hersh E. M., Hruby V J., Kazmlerski W M., and Knapp R. J. (1991) A new type of synthetic peptlde library for identifying ligand-binding actrvrty. Nature 354, 82–84PubMedCrossRefGoogle Scholar
  5. 5.
    Houghten R A., Pnulla C., Blondelle S E., Appel J R., Dooley C T., and Cuervo J H. (1991) Generation and use of synthetic peptlde combinatorial librartes for basic research and drug discovery. Nature 354, 84–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Gallop M A., Barrett R. W., Dower W. J., Fodor S P. A., and Gordon E M. (1994) Applications of combinatorial technologres to drug discovery 1. Background and peptlde combinatorial libraries J.Med Chem. 37, 1233–1251.PubMedCrossRefGoogle Scholar
  7. 7.
    Gordon E M., Barrett R. W., Dower W J., Fodor S. P. A., and Gallop M. A (1994) Applications of combinatorial technologtes to drug discovery 2. Combinatorial organic synthesis, library screening strategies, and future directions. J.Med Chem. 37, 1385–1401.PubMedCrossRefGoogle Scholar
  8. 8.
    Jayawlckreme C K., Graminski G. F., Quillan J M., and Lerner M R. (1994) Creation and functional screemng of a multi-use peptide library Proc Natl. Acad Scz USA 91, 1614–1618.CrossRefGoogle Scholar
  9. 9.
    Jayawickreme C K., Quillan J M., Graminski G F., and Lerner M R (1994) Discovery and structure-function analysis of α-melanocyte-stimulating hormone antagonists. J. Bzol. Chem. 47, 29,846–29,854Google Scholar
  10. 10.
    Quillan J M., Jayawickreme C K., and Lerner M. R (1995) Cotnbinatorlal diffusion assay used to ldentlfy topically active melanocyte-stlmulating hormone receptor antagomsts Proc. Natl. Acad. Scl USA 92, 2894–2898CrossRefGoogle Scholar
  11. 11.
    Jayawlckreme C. K and Lerner M. R. (1993) Generation and screening of mobile peptide libraries FASEB J. 7, A1237 (abstract).Google Scholar
  12. 12.
    Matsueda G R and Stewart J.M. (1981) A p-Methylbenzhydrylamme resin for Improved solid-phase synthesis of peptide amides Peptzdes 2, 45–50.CrossRefGoogle Scholar
  13. 13.
    Fields G B., Tlan Z., and Barany G. (1992) Principles and practice of solid phase peptlde synhesis, in Synthetzc Peptldes: A User’s Guide (Grant G A., ed.), Freeman, New York, pp 77–183Google Scholar
  14. 14.
    Fields G B and Noble R L. (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids Znt J.Pept Protein Res. 35, 161–214CrossRefGoogle Scholar
  15. 15.
    Fields C. G., Lloyd D H., Macdonald R. L., Otteson K. M., and Noble R. L. (1991) HBTU activation for automated Fmoc solid-phase peptide synthesis. Pept. Res. 4, 95–101.PubMedGoogle Scholar
  16. 16.
    Sarin V.K., Kent S.B H., Tam J P., and Merrifield R B (1981) Quantitative monitoring of solid-phase peptide synthesis by the nmhydrin reaction Anal Biochem. 117, 147–157PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • Channa K. Jayawickreme
    • 1
  • Shiranthi P. Jayawickreme
    • 1
  • Michael R. Lerner
    • 2
  1. 1.Department of Cellular BiochemistryGlaxo-Wellcome, Inc.
  2. 2.Boyer Center for Molecular Medicine, Howard Hughes Medical InstituteYale University School of MedicineNew Haven

Personalised recommendations