Skip to main content

In Vitro Selection of Hairpin Ribozymes

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 74))

Abstract

In vitro selection methods are powerful tools for the selection of molecules with defined characteristics from complex starting populations (1,2). We have developed a powerful in vitro selection method for analysis of the hairpin ribozyme (35). The selection method relies on two sequential RNA-catalyzed reactions, cleavage, and ligation (Fig. 1). In vitro selection of ribozymes, like Darwinian selection of organisms, proceeds through an iterative process consisting of three major steps: mutation, selection of the molecules fulfilling the selection criteria, and replication of the selected molecules.

In vitro selection scheme. Steps are shown for one round of in vitro selection for both active and inactive molecules. The hairpin ribozyme is represented as a schematic secondary structure P1, P2, and P3 are the primer-binding sate sequences P1, T7P1, P2, and P3 primers are the primers used for reverse transcription and PCR amplification of the molecules (note that P2 and P3 primers are complementary to P2 and P3, respectively, whereas P1 primer has the same polarity as P1).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Szostak, J. W. (1992) In vitro genetics. Trends Biochem. Sci. 17, 89–93.

    Article  PubMed  CAS  Google Scholar 

  2. Joyce, G. F. (1992) Directed molecular evolution. Sci. Am. 267, 90–97.

    Article  PubMed  CAS  Google Scholar 

  3. Berzal-Herranz, A., Joseph, S., and Burke, J. M. (1992) In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions. Genes Dev. 6, 129–134.

    Article  PubMed  CAS  Google Scholar 

  4. Berzal-Herranz, A., Joseph, S., Chowrira, B. M., Butcher, S. E., and Burke, J. M. (1993) Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. 12, 2567–2574.

    PubMed  CAS  Google Scholar 

  5. Burke, J. M. (1994) The hairpin ribozyme. Nucleic Acids Mol. Biol. 8, 105–118.

    CAS  Google Scholar 

  6. Joseph, S., Berzal-Herranz, A., Chowrira, B. M., Butcher, S. E., and Burke, J. M. (1993) Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates. Genes Dev. 7, 130–138.

    Article  PubMed  CAS  Google Scholar 

  7. Zaug, A. J., Grosshans, C. A., and Cech, T. R. (1988) Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme. Enhanced cleavage of certain oligonucleotide substrates that form mismatched ribozyme-substrate complexes. Biochemistry 27, 8924–8931.

    Article  PubMed  CAS  Google Scholar 

  8. Butcher, S. E. and Burke, J. M. (1994) A photo-cross-linkable tertiary structure motif found in functionally distinct RNA molecules is essential for catalytic function of the hairpin ribozyme. Biochemistry 33, 992–999.

    Article  PubMed  CAS  Google Scholar 

  9. Cadwell, R. C. and Joyce, G. F. (1992) Randomization of genes by PCR mutagenesis. PCR Methods App.l 2, 28–33.

    CAS  Google Scholar 

  10. Joseph, S. and Burke, J. M. (1993) Optimization of an anti-HIV hairpin ribozyme by in vitro selection. J. Biol. Chem. 268, 24,515–24,518.

    Google Scholar 

  11. Feldstein, P. A. and Bruening, G. (1993) Catalytically active geometry in the reversible circularization of “mini-monomer” RNAs derived from the complementary strand of tobacco ringspot virus satellite RNA. Nucleic Acids Res. 21, 1991–1998.

    Article  PubMed  CAS  Google Scholar 

  12. Milligan, J. F. and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62.

    Article  PubMed  CAS  Google Scholar 

  13. Sambrook, J., Frisch, E. F., and Maniatis, T. (1989) Molecular Cloning A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  14. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1992) Current Protocols in Molecular Biology. Wiley, New York.

    Google Scholar 

  15. Chowrira, B. M., Berzal-Herranz, A., and Burke, J. M. (1993) Ionic requirements for RNA binding, cleavage, and ligation by the hairpin ribozyme. Biochemistry 32, 1088–1095.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Sargueil, B., Burke, J.M. (1997). In Vitro Selection of Hairpin Ribozymes. In: Turner, P.C. (eds) Ribozyme Protocols. Methods in Molecular Biology™, vol 74. Humana Press. https://doi.org/10.1385/0-89603-389-9:289

Download citation

  • DOI: https://doi.org/10.1385/0-89603-389-9:289

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-389-4

  • Online ISBN: 978-1-59259-560-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics