Clinical Aspects of Ribozymes as Therapeutics in Gene Therapy

  • David Looney
  • Mang Yu
Part of the Methods in Molecular Biology™ book series (MIMB, volume 74)


By June 1995, 112 gene therapy trials had been approved by the NIH Recombinant DNA Advisory Committee (RAC) in the US, involving 500 actual, planned, or projected patients (1, 2, 3). Marking trials comprise roughly 20% (25 in total) of all approved studies, while the remainder are considered to have therapeutic objectives. All together 87 treatment protocols are active, including 9 trials directed toward treatment of HIV infection, 21 that address genetic disorders, 1 each involving treatment of autoimmune or atherosclerotic disease, and 55 studies that target cancer therapy in some form (see Fig. 1). Therapeutic trials include 38 in vivo studies and 42 ex vivo studies, all together employing over 81 vectors (50 murine, 15 adenovirus, 1 AAV), as well as several other delivery systems (12 lipid mediated and 3 naked DNA delivery protocols). Treatment studies involving protein expression include replacement studies (e.g., ADA deficiency, cystic fibrosis, α-1-antitrypsin deficiency, Gaucher’s disease, familial hypercholesterolemia, and Hunter syndrome), and trials aimed to produce immunomodulation or immunoprophylaxis (including introduction of genetically engineered cytotoxic lymphocytes, vectors expressing viral proteins, and vectors expressing cytokines, such as GM-CSF, IL-2, IL-3, IL-6, IL-7, IL-12, and TNF, into malignant cells [1, 2, 3). Other trials involved introduction of toxin genes, particularly thymidine kinase (hsv-tk), into tumor tissue or protective genes (e.g., human multidrug resistance gene) into normal hematopoetic tissue to protect bone marrow during cytotoxic chemotherapy.
Fig 1.

Approved gene therapy trials in the US Data from the Office of Recombinant DNA Activities (ORDA) as published in Human Gene Therapy summaries in Gene Therapy Newsletter Issue 12, pp 1–2 (1995) was used to construct a cumulative graph indicating active approved protocols in the indicated areas. The group designated as “Other” includes protocols for autoimmune diseases and atherosclerotic vascular disease, and may not include protocols for which RAC approval was deferred with subsequent submission directly to the FDA.


Gene Therapy Familial Hypercholesterolemia Hammerhead Ribozyme Gene Therapy Trial Hairpin Ribozyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Culver, K. W. (1995) The June 1995 RAC Meeting. Gene Ther. Newsletter 12, 1,2.Google Scholar
  2. 2.
    Recombinant DNA Advisory Committee (RAC) Data Management Report—December 1994 and Human Gene Marker/Therapy Protocols (1994). Hum Gene Ther. 5, 1111–1127, 1537-1545.Google Scholar
  3. 3.
    ORDA/NIH Reports and Human Gene Marker/Therapy Protocols (1995). Hum Gene Ther. 6, 265–274, 391-393, 539-548.Google Scholar
  4. 4.
    Perriman, R. J. and Gerlach, W. L. (1990) Manipulating gene expression by ribozyme technology. Curr. Opinion Biotechnol. 1, 86–91.CrossRefGoogle Scholar
  5. 5.
    Sioud, M and Drlica, K. (1991) Prevention of human immunodeficiency virus type 1 integrase expression in Escherichia coli by a ribozyme. Proc. Natl. Acad. Sci USA 88, 7303–7307.PubMedCrossRefGoogle Scholar
  6. 6.
    Sarver, N., Cantin, E. M., Chang, P. S., Zaia, J. A., Ladne, P. A., Stephens, D. A., and Rossi, J. J. (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247, 1222–1225.PubMedCrossRefGoogle Scholar
  7. 7.
    Poeschla, E. and Wong-Staal, F. (1994) Antiviral and anticancer ribozymes. Curr Opinion Oncol. 6, 601–606.CrossRefGoogle Scholar
  8. 8.
    Kiehntopf, M., Esquivel, E. L., Brach, M. A., and Herrmann, F. (1995) Ribozymes biology, biochemistry, and implications for clinical medicine. J. Mol. Med. 73, 65–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Rossi, J. J. (1995) Therapeutic antisense and ribozymes. Br. Med. Bull. 51, 217–225.PubMedGoogle Scholar
  10. 10.
    Kiehntopf, M., Esquivel, E. L., Brach, M. A., and Herrmann, F. (1995) Clinical applications of ribozymes. Lancet 345, 1027–1031.PubMedCrossRefGoogle Scholar
  11. 11.
    Gibson, I. (1994) Antisense DNA and RNA strategies new approaches to therapy. J. Royal Coll. Phys. (Lond) 28, 507–511.Google Scholar
  12. 12.
    Yu, M., Poeschla, E., and Wong-Staal, F. (1994) Progress towards gene therapy for HIV infection. Gene Ther. 1, 13–26.PubMedGoogle Scholar
  13. 13.
    Jenks, S. (1993) Gene therapy advances slowly into the clinic. J. Natl. Cancer Inst. 85, 1186–1181.PubMedCrossRefGoogle Scholar
  14. 14.
    Rossi, J. J., Cantin, E. M., Sarver, N., and Chang, P. F. (1991) The potential use of catalytic RNAs in therapy of HIV infection and other diseases. Pharmacol. and Ther. 50, 245–254.CrossRefGoogle Scholar
  15. 15.
    Bernstein, R. M. (1990) Humoral autoimmunity in systemic rheumatic disease. A review. J. Royal Coll. Phys. (Lond.) 24, 18–25.Google Scholar
  16. 16.
    Brogden, R. N. and Heel, R. C. (1987) Human insulin. A review of its biological activity, pharmacokinetics and therapeutic use. Drugs. 34, 350–371.PubMedCrossRefGoogle Scholar
  17. 17.
    Tang, E. (1991) Hepatitis C virus. A review. Western J. Med. 155, 164–168.Google Scholar
  18. 18.
    Offensperger, W.B., Blum, H. E., and Gerok, W. (1994) Molecular therapeutic strategies in hepatitis B virus infection. Clin. Invest. 72, 737–741.CrossRefGoogle Scholar
  19. 19.
    Roth, G., Curiel, T., and Lacy, J. (1994) Epstein-Barr viral nuclear antigen 1 antisense oligodeoxynucleotide inhibits proliferation of Epstein-Barr virus-immortalized B cells. Blood. 84, 582–587.PubMedGoogle Scholar
  20. 20.
    Carreno, V., Bartolome, J., Madejon, A. (1994) Hepatitis delta virus infection molecular biology and treatment. Dig. Dis. 12, 265–275.PubMedCrossRefGoogle Scholar
  21. 21.
    Lai, M. M., Chao, Y. C., Chang, M. F., Lin, J. H., and Gust, I. (1991) Functional studies of hepatitis delta antigen and delta virus RNA. Prog. Clin. Biol. Res. 364, 283–292.PubMedGoogle Scholar
  22. 22.
    Joske, D. and Knecht, H. (1993) Epstein-Barr virus in lymphomas: a review. Blood Rev. 7, 215–222.PubMedCrossRefGoogle Scholar
  23. 23.
    Yoffe, B. and Noonan, C. A. (1992) Hepatitis B virus. New and evolving issues. Dig. Dis. Sci. 37, 1–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Chang, Y., Cesarman, E., Pessin, M. S., Lee, F., Culpepper, J., Knowles, D. M., and Moore, P. S. (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266, 1865–1869.PubMedCrossRefGoogle Scholar
  25. 25.
    Leopold, L. H., Shore, S. K., Newkirk, T. A., Reddy, R. M., and Reddy, E. P. (1995) Multi-unit ribozyme-mediated cleavage of bcr-abl mRNA in myeloid leukemias. Blood 85, 2162–2170.PubMedGoogle Scholar
  26. 26.
    Leopold, L. H., Shore, S.K., Newkirk, T., Mangan, K., and Reddy, E. P. (1994) Ribozyme mediated therapy for chrome myelogenous leukemia. Prog. Clin. Biol. Res. 389, 175–182.PubMedGoogle Scholar
  27. 27.
    Pace, U., Bockman, J. M., MacKay, B.J., Miller, W. H., Jr, Dmitrovsky, E., and Goldberg, A. R. (1994) A ribozyme which discriminates in vitro between PML and RAR alpha, the t(15;17)-associated fusion RNA of acute promyelocytic leukemia, and PML and RAR alpha, the transcripts from the nonrearranged alleles. Cancer Res. 54, 6365–6369.PubMedGoogle Scholar
  28. 28.
    Feng, M., Cabrera, G., Deshane, J., Scanlon, K. J., and Curiel, D. T. (1995) Neoplastic reversion accomplished by high efficiency adenoviral-mediated delivery of an anti-ras ribozyme. Cancer Res. 55, 2024–2028.PubMedGoogle Scholar
  29. 29.
    Funato, T., Shitara, T., Tone, T., Jiao, L., Kashani-Sabet, M., and Scanlon, K. J. (1994) Suppression of H-ras-mediated transformation in NIH3T3 cells by a ras ribozyme. Biochem Pharmacol. 48, 1471–1475.PubMedCrossRefGoogle Scholar
  30. 30.
    Ohta, Y., Tone, T., Shitara, T., Funato, T., Jiao, L., Kashfian, B. I., Yoshida, E., Horng, M., Tsai, P., Lauterbach, K., et al. (1994) H-ras ribozyme-mediated alteration of the human melanoma phenotype. Ann. NY. Acad. Sci. 716, 242–253.PubMedCrossRefGoogle Scholar
  31. 31.
    Kashani-Sabet, M., Funato, T., Florenes, V. A., Fodstad, O., and Scanlon, K. J. (1994) Suppression of the neoplastic phenotype in vivo by an anti-ras ribozyme. Cancer Res. 54, 900–902.PubMedGoogle Scholar
  32. 32.
    Tone, T., Kashani-Sabet, M., Funato, T., Shitara, T., Yoshida, E., Kashfian, B. I., Horng, M., Fodstadt, O., and Scanlon, K. J. (1993) Suppression of EJ cells tumorigenicity. In Vivo 7, 471–476.PubMedGoogle Scholar
  33. 33.
    Kashani-Sabet, M., Funato, T., Tone, T., Jiao, L., Wang, W., Yoshida, E., Kashfinn, B. I., Shitara, T., Wu, A. M., Moreno, J. G., et al. (1992) Reversal of the malignant phenotype by an anti-ras ribozyme. Antisense Res. Devel. 2, 3–15.Google Scholar
  34. 33.
    Bertram, J., Palfner, K., Killian, M., Brysch, W., Schlingensiepen, K. H., Hiddemann, W., and Kneba, M. (1995) Reversal of multiple drug resistance in vitro by phosphorothioate oligonucleotides and ribozymes. Anti-Cancer Drugs 6, 124–134.PubMedCrossRefGoogle Scholar
  35. 34.
    Kobayashi, H., Kim, N., Halatsch, M. E., Ohnuma, T. (1994) Specificity of ribozyme designed for mutated DHFR mRNA. Biochem. Pharmacol. 47, 1607–1613.PubMedCrossRefGoogle Scholar
  36. 35.
    Kobayashi, H., Dorai, T., Holland, J. F., and Ohnuma, T. (1994) Reversal of drug sensitivity in multidrug-resistant tumor cells by an MDR1 (PGY1) ribozyme. Cancer Res. 54, 1271–1275.PubMedGoogle Scholar
  37. 36.
    Holm, P. S., Scanlon, K. J., and Dietel, M. (1994) Reversion of multidrug resistance in the P-glycoprotein-positive human pancreatic cell line (EPP85-181RDB) by introduction of a hammerhead ribozyme. Br. J. Cancer 70, 23–243.CrossRefGoogle Scholar
  38. 37.
    Carlock, L., Gutridge, K., and Vo, T. (1994) A Sau3A polymorphism in the 5’ end of the IT 15 gene that nonrandomly segregates with the Huntington disease tri-nucleotide expansion. Hum. Genet. 93, 457–459.PubMedCrossRefGoogle Scholar
  39. 38.
    Kremer, B., Goldberg, P., Andrew, S. E., Theilmann, J., Telenius, H., Zeisler, J., Squitieri, F., Lin, B., Bassett, A., Almqvist, E., et al (1994) A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N. Engl. J. Med. 330, 1401–1406.PubMedCrossRefGoogle Scholar
  40. 39.
    Goldberg, Y. P., Telenius, H., and Hayden, M. R. (1994) The molecular genetics of Huntington’s disease. Curr. Opinion Neurol. 7, 325–332.CrossRefGoogle Scholar
  41. 40.
    The European Polycystic Kidney Disease Consortium (1994) The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77, 881–894.CrossRefGoogle Scholar
  42. 41.
    Assouline, L., Levy, E., Feoli-Fonseca, J. C., Godbout, C., and Lambert, M. (1995) Familial hypercholesterolemia: molecular, biochemical, and clinical characterization of a French-Canadian pediatric population. Pediatrics 96, 239–246.PubMedGoogle Scholar
  43. 42.
    Wilson, J. M., Grossman, M., Raper, S. E., Baker, J. R. Jr, Newton, R. S., and Thoene, J. G. (1992) Ex vivo gene therapy of familial hypercholesterolemia. Hum. Gene Ther. 3, 179–222.PubMedCrossRefGoogle Scholar
  44. 43.
    Lane, D. A., Olds, R.J., and Thein, S. L. (1994) Antithrombin III: summary of first database update. Nucleic Acids Res. 22, 3556–3559.PubMedGoogle Scholar
  45. 44.
    Ojwang, J. O., Hampel, A., Looney, D. J., Wong-Staal, F., and Rappaport, J. (1992) Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc. Natl. Acad. Sci. USA 89, 10,802–10,806.PubMedCrossRefGoogle Scholar
  46. 45.
    Yu, M., Ojwang, J., Yamada, O., Hampel, A., Rapapport, J., Looney, D., and Wong-Staal, F. (1993) A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc Natl. Acad. Sci. USA 90, 6340–6344. [Published erratum appears in Proc. Natl. Acad. Sci USA 90, 8303]PubMedCrossRefGoogle Scholar
  47. 46.
    Yamada, O., Yu, M., Yee, J. K., Kraus, G., Looney, D., and Wong-Staal, F. (1994) Intracellular immunization of human T-cells with a hairpin ribozyme against human immunodeficiency virus type 1. Gene Ther. 1, 39–45.Google Scholar
  48. 47.
    Sun, L. Q., Wang, L., Gerlach, W. L., and Symonds, G. (1995) Target sequence-specific inhibition of HIV-1 replication by ribozymes directed to tat RNA. Nucleic Acids Res. 23, 2909–2913.PubMedCrossRefGoogle Scholar
  49. 48.
    Leavitt, M. C., Yu, M., Yamada, O., Kraus, G., Looney, D., Poeschla, E., and Wong-Staal, F. (1994) Transfer of an anti-HIV-1 ribozyme gene into primary human lymphocytes. Hum. Gene Ther. 5, 1115–1120.PubMedCrossRefGoogle Scholar
  50. 49.
    Sun, L. Q., Pyati, J., Smythe, J., Wang, L., Macpherson, J., Gerlach, W., and Symonds, G. (1995) Resistance to human immunodeficiency virus type 1 infection conferred by transduction of human peripheral blood lymphocytes with ribozyme, antisense, or polymeric trans-activation response element constructs. Proc. Natl. Acad. Sci. USA 92, 7272–7276.PubMedCrossRefGoogle Scholar
  51. 50.
    Yu, M., Leavitt, M. C., Maruyama, M., Yamada, O., Young, D., Ho, A. D., and Wong-Staal, F. (1995) Intracellular immunization of human fetal cord blood stem/ progenitor cells with a ribozyme against human immunodefictency virus type 1. Proc. Natl. Acad. Sci. USA 92, 699–703.PubMedCrossRefGoogle Scholar
  52. 51.
    Hoogerbrugge, P. M., von Beusechem, V. W., Kaptein, L. C., Einerhand, M. P., and Valerio, D. (1995) Gene therapy for adenosine deaminase deficiency. Brit. Med. Bull. 51, 72–81.PubMedGoogle Scholar
  53. 52.
    Cai, Q., Rubin, J. T., and Lotze, M. T. (1995) Genetically marking human cells: results of the first clinical gene transfer studies. Cancer Gene Ther. 2, 125–316.PubMedGoogle Scholar
  54. 53.
    Miller, A. R., Skotzko, M. J., Rhoades, K., Belldegrun, A. S., Tso, C. L., Kaboo, R., McBride, W. H., Jacobs, E., Kohn, D. B., Moen, R., et al. (1992) Simultaneous use of two retroviral vectors in human gene marking trials: feasibility and potential applications. Hum. Gene Ther. 3, 619–624.PubMedCrossRefGoogle Scholar
  55. 54.
    Foa, R. (1994) Interleukin-2 and gene therapy in the management of acute lymphoblastic leukaemia. Batllieres Clin. Haematol 7, 421–434.CrossRefGoogle Scholar
  56. 55.
    Guidelines for Research Involving Recombinant DNA Molecules (NIH Guidelines) (1994) Fed. Register 59, FR 34496.Google Scholar
  57. 56.
    Guidelines for Research Involving Recombinant DNA Molecules (NIH Guidelines) (1994) Amendment. Fed. Register 59, FR 40170.Google Scholar
  58. 57.
    Guidelines for Research Involving Recombinant DNA Molecules (NIH Guidelines) (1995) Amendment. Fed. Regrster 60, FR 20726.Google Scholar
  59. 58.
    Collection of Leukocytes for Further Manufacturing. CBER, January 1981, G006, Congressional and Consumer Affairs Branch (HFM-12), Rockville, MD 20852-1448 (USA).Google Scholar
  60. 59.
    Uniform Labeling of Blood and Blood Components. CBER, August 1985, G010 Congressional and Consumer Affairs Branch (HFM-12), Rockville, MD. 20852-1448 (USA).Google Scholar
  61. 60.
    Guidelines for Adverse Experience Reporting for Licensed Biological Products. CBER, 10/15/93, G024 Congressional and Consumer Affairs Branch (HFM-12), Rockville, MD. 20852-1448 (USA).Google Scholar
  62. 61.
    Points to Consider in Human Somatic Cell Therapy and Gene Therapy. CBER, 8/ 27/91, P008. Congressional and Consumer Affairs Branch (HFM-12), Rockville, MD. 20852-1448 (USA).Google Scholar
  63. 62.
    Points to Consider in the Characterization of Cell Lines Used to Produce Biologicals CBER, 7/12/93, P012. Congressional and Consumer Affairs Branch (HFM-12), Rockville, MD 20852-1448 (USA).Google Scholar
  64. 63.
    FDA’s Policy Statement Concerning Cooperative Manufacturing Arrangements for Licensed Biologics CBER, 1/25/92, F001. Congressional and Consumer Affairs Branch (HFM-12), Rockville, MD 20852-1448 (USA).Google Scholar
  65. 64.
    Application of Current Statutory Authorities to Human Somatic Cell Therapy Products and Gene Therapy Products CBER, 10/27/94, F007. Congressional and Consumer Affairs Branch (HFM-12), Rockville, MD. 20852-1448 (USA).Google Scholar
  66. 65.
    Adverse Experience Reporting Requirements for Licensed Biological Products, Final Rule CBER, 10/27/94, F007. Congressional and Consumer Affairs Branch (HFM-12), Rockville, MD. 20852-1448 (USA).Google Scholar
  67. 66.
    Biotechnology Facthty Requirements, Part I—Facility & Systems Design. CBER, A002. Congressional and Consumer Affairs Branch (HFM-12), Rockville, MD 20852-1448 (USA).Google Scholar
  68. 67.
    Biotechnology Facility Requirements, Part II—Operating Procedures and Validation. CBER, A003. Congressional and Consumer Affairs Branch (HFM-12), Rockville, MD. 20852-1448 (USA).Google Scholar
  69. 68.
    The National Task Force on AIDS Drug Development, Drug Development Subcommittee Gene Therapy IND Issues. September 13–14, 1995. Appendix.Google Scholar
  70. 69.
    Yu, M., Poeschla, E., Yamada, O., Degrandis, P, Leavitt, M. C., Heusch, M., Yees, J. K., Wong-Staal, F., and Hampel, A. (1995) In vitro and in vivo characterization of a second functional hairpin ribozyme against HIV-1, Virology 206, 381–386.PubMedCrossRefGoogle Scholar
  71. 70.
    Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W, Leonard, J. M., and Markowrtz, M. (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126.PubMedCrossRefGoogle Scholar
  72. 71.
    Piatak, M. Jr, Saag, M. S., Yang, L. C., Clark, S. J., Kappes, J. C., Luk, K. C., Hahn, B. H., Shaw, G. M., and Lifson, J. D. (1993) Hugh levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259, 1749–1754.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • David Looney
    • 1
  • Mang Yu
    • 2
  1. 1.San Diego Veterans Administration Medical CenterSan Diego
  2. 2.ImmusolSan Diego

Personalised recommendations