Skip to main content

Use of Divalent Metal Ions Chelated to Agarose Derivatives for Reversible Immobilization of Proteins

  • Protocol
Immobilization of Enzymes and Cells

Part of the book series: Methods in Biotechnology ((MIBT,volume 1))

Abstract

Immobilization of a protein through coordinate bonds formed with divalent metal ions (e.g., Me(II), Cu(II)) is becoming an attractive alternative to covalent coupling chemistries. This is primarily a result of the reversible nature of the immobilization, because the protein may be easily removed from the support matrix through interruption of the protein-metal bond. The primary requirement for immobilization via Me(II) interaction is surface histidine residues (14), When such residues are absent, genetic engineering may be used to enhance metal affinity by incorporation of histidine containing metal affinity tails (58). Thus proteins of varying sources and enzymatic activity may be immobilized using this technique (9,10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porath, J., Carlsson, J., Olsson, I., and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598,599.

    Article  PubMed  CAS  Google Scholar 

  2. Hemdan, E., Zhao, Y., Sulkowski, E., and Porath, J. (1989) Surface topography of histidine residues: a facile probe by immobilized metal ion affinity chromatography. Proc. Natl Acad. Sci. USA 86, 1811–1815.

    Article  PubMed  CAS  Google Scholar 

  3. Arnold, F. (1991) Metal-affinity separations: a new dimension in protein processing. Biotechnology 9, 151–156.

    Article  PubMed  CAS  Google Scholar 

  4. Beitle, R. and Ataai, M. (1992) Immobilized metal affinity chromatography and related techniques, in New Developments in Bioseparanon (Ataai, M. and Sikdar, S., eds.), American Institute of Chemical Engineers, New York, pp. 34–44.

    Google Scholar 

  5. Beitle, R. and Ataai, M. (1993) One-step purification of a model periplasmic protein from inclusion bodies by its fusion to an effective metal-binding peptide. Biotechnol Progr. 9, 64–69.

    Article  CAS  Google Scholar 

  6. Hochuli, E., Bannwarth, W., Dobeli, H., Gentz, R., and Stuber, D. (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbant. Biotechnology 6, 1321–1325.

    Article  CAS  Google Scholar 

  7. Lilius, G., Persson, M., Bulow, L., and Mosbach, K. (1991) Metal affinity precipitation of proteins carrying genetically attached polyhistidine affinity tails. Eur. J. Biochem. 198,499–504.

    Article  PubMed  CAS  Google Scholar 

  8. Ljungquist, C., Breitholtz, A., Brink-Nilsson, H., Moks, T., Uhlen, M., and Nilsson, B. (1989) Immobilization and affinity purification of recombinant proteins using histidine-peptide fusions. Eur. J. Biochem. 186, 563–569.

    Article  PubMed  CAS  Google Scholar 

  9. Coulet, P., Carlsson, J., and Porath, J. (1981) Immobilization of enzymes on metal-chelate regenerable carriers. Biotechnol Bioeng. 23, 663–668.

    Article  CAS  Google Scholar 

  10. Piesecki, S., Teng, W.Y., and Hochuli, E. (1993) Immobilization of β-galactosidase for application in organic chemistry using a chelating peptide. Biotechnol. Bioeng. 42, 178–184.

    Article  PubMed  CAS  Google Scholar 

  11. Abudiab, T. and Beitle, R. (1995) Preparation of magnetic immobilized metal affinity separation media and its use in the isolation of proteins. Biophysical J., in press.

    Google Scholar 

  12. Lee, Y. and Vacquier, V. (1992) Reusable cDNA libraries coupled to magnetic beads. Anal Biochem. 206, 206,207.

    Article  PubMed  CAS  Google Scholar 

  13. Sikavitsas, V., Yang, R., and Burns, M. (1995) Magnetically stabilized fluidized beds. Indus. Eng. Res. 34, 2873–2880.

    Article  CAS  Google Scholar 

  14. Zhao, Y, Sulkowski, E., and Porath, J. (1991) Surface topography of histidine residues in lysozymes. Eur. J. Biochem. 202, 1115–1119.

    Article  PubMed  CAS  Google Scholar 

  15. Yip, T., Nakagawa, Y, and Porath, J. (1989) Evaluation of the interaction of pep-tides with Cu(II), Ni(II), and Zn(II) by high-performance immobilized metal ion affinity chromatography. Anal. Biochem. 183, 159–171.

    Article  PubMed  CAS  Google Scholar 

  16. Porath, J. (1987) Metal ion-hydrophobic, thiophilic, and p-electron governed interactions and their application to salt-promoted protein adsorption chromatography. Biotechnol. Prog. 3, 14–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc , Totowa, NJ

About this protocol

Cite this protocol

Beitle, R.R., Ataai, M.M. (1997). Use of Divalent Metal Ions Chelated to Agarose Derivatives for Reversible Immobilization of Proteins. In: Bickerstaff, G.F. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnology, vol 1. Humana Press. https://doi.org/10.1385/0-89603-386-4:339

Download citation

  • DOI: https://doi.org/10.1385/0-89603-386-4:339

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-386-3

  • Online ISBN: 978-1-59259-481-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics