Skip to main content

Coimmobilization of Enzymes and Cells

  • Protocol

Part of the book series: Methods in Biotechnology ((MIBT,volume 1))

Abstract

Coimmobilization of cells and/or enzymes is performed for three main reasons: first, to enable cells to use other, nonmetabolizable substrates than the natural ones of the corresponding strain (1,2); second, to enlarge the product spectrum by utilization of the catalytic capabilities of the coimmobilized enzyme or cell (3); and third, to simplify conventional two- or more step processes. A simplification of multiple-step processes can also be obtained by using recombinant strains containing the genes of the needed additional enzymes (4).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hahn-Hagerdal, B. (1985) Comparison between immobilized Klyuveromyces fragilis and Saccharomyces cerevisiae co-immobilized with β-galactosidase, with respect to continuous ethanol production from concentrated whey permeate. Biotechnol. Bioeng. 27, 914–916.

    Article  PubMed  CAS  Google Scholar 

  2. Hahn-Hagerdal, B. (1984) An enzyme co-immobilized with a microorganism: the conversion of cellobiose to ethanol using β-galactosidase and Saccharomyces cerevisiae in calcium alginate gels. Biotechnol. Bioeng. 26, 771–774.

    Article  PubMed  CAS  Google Scholar 

  3. Martin, C. K. A. and Perlman, D. (1975) Conversion of L-sorbose to 2-keto-gulonic acid by mixtures of immobilized cells of Gluconobacter melanogenus IFO 3293 and Pseudomonas species. Eur. J. Appl. Microbiol. 3, 91–95.

    Google Scholar 

  4. Janse, B. J. H. and Pretorius, I. S. (1995) One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing α-amylase, glucoamylase and pullulanase. Appl. Microbiol. Biotechnol 42, 878–883.

    Article  PubMed  CAS  Google Scholar 

  5. Hahn-Hagerdal, B. (1983) Co-immobilization involving cells, organelles, and enzymes, in Immobilized Cells and Organelles, vol. 2 (Mattiasson, B., ed.), CRC, Boca Raton, FL, pp. 79–94.

    Google Scholar 

  6. Hartmeier, W. (1983) Preparation, properties and possible applications of co-immobilized biocatalysts, in Enzyme Technology (Lafferty, R. M., ed.), Springer Verlag, Berlin, pp. 207–217.

    Google Scholar 

  7. Adlercreutz, P., Holst, O., and Mattiasson, B. (1982) Oxygen supply to immobilized cells: 2. studies on a coimmobilized algae-bacteria preparation with in situ oxygen generation. Enzyme Microb. Technol. 4, 395–400.

    Article  CAS  Google Scholar 

  8. Mansfeld, J., Förster, M., Hoffmann., T., Schellenberger, A., and Dautzenberg, H. (1995) Coimmobilization of Yarrowia lipolytica cells and invertase in polyelectrolyte complex microcapsules. Enzyme Microb. Technol. 17, 11–17.

    Article  CAS  Google Scholar 

  9. Cuatrecasas, P. and Parikh, I. (1972) Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose. Biochemistry 11, 2291–2305.

    Article  PubMed  CAS  Google Scholar 

  10. Mansfeld, J., Förster, M., Schellenberger, A., and Dautzenberg, H. (1991) Immobilization of invertase by encapsulation in polyelectrolyte complexes. Enzyme Microb. Technol 13, 240–244.

    Article  PubMed  CAS  Google Scholar 

  11. Ristau, O., Pommerening, K., Jung, C., Rein, H., and Scheler, W. (1985) Aktivitätseigenschaften von Urease in Mikrokapseln. Biomed. Biochim. Acta 44, 1105–1111.

    PubMed  CAS  Google Scholar 

  12. Hartmeier, W. (1990) Co-immobilization of enzymes and whole cells. Food Biotechnol 4, 399–407.

    Article  CAS  Google Scholar 

  13. Hartmeier, W. and Heinrichs, A. (1986) Membrane enclosed alginate beads containing Gluconobacter cells and molecular dispersed catalase. Biotechnol. Lett. 8, 567–572.

    Article  Google Scholar 

  14. Lee, J. M. and Woodward, J. (1983) Properties and application of immobilized β-D-glucosidase coentrapped with Zymomonas mobilis in calcium alginate. Biotechnol. Bioeng. 25, 2441–2451.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc , Totowa, NJ

About this protocol

Cite this protocol

Mansfeld, J., Dautzenberg, H. (1997). Coimmobilization of Enzymes and Cells. In: Bickerstaff, G.F. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnology, vol 1. Humana Press. https://doi.org/10.1385/0-89603-386-4:319

Download citation

  • DOI: https://doi.org/10.1385/0-89603-386-4:319

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-386-3

  • Online ISBN: 978-1-59259-481-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics