Skip to main content

Enzyme Immobilization Using Chitosan-Xanthan Complexes

  • Protocol
Immobilization of Enzymes and Cells

Part of the book series: Methods in Biotechnology ((MIBT,volume 1))

  • 1831 Accesses

Abstract

The immobilization of enzymes is a technique extensively studied since the late 1960s (1), and the knowledge accumulated on enzyme immobilization studies has grown steadily since then (26). Hydrogels are a particular category of support material that can be used for convenient immobilization. The preparation of hydrogels can be achieved by a variety of methods: reticulation of linear polymers, grafting of synthetic polymers onto naturally occurring macromolecules, chelation of polycations, and complexation between polyanions and polycations (711). In this chapter, we describe novel hydrogels prepared from naturally occurring polymers, namely chitosan and xanthan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silman, I. H. and Katchalski, E. (1966) Water-insoluble derivatives of enzymes, antigens, and antibodies. Ann. Rev. Biochem. 35, 873–877.

    Article  PubMed  CAS  Google Scholar 

  2. Crumbliss, A. L., Stonehuerner, J. G., and Henkens, R. W. (1993) Carrageenan hydrogel stabilized colloidal gold multi-enzyme biosensor electrode utilizing immobilized horseradish peroxidase and cholesterol oxidase/cholesterol esterase to detect cholesterol in serum and whole blood. Biosensors and Bioelectron. 8, 331–335.

    Article  CAS  Google Scholar 

  3. Klibanov, A. M. (1983) Immobilized enzymes and cells as practical catalysts Science 219, 722–725.

    Article  PubMed  CAS  Google Scholar 

  4. Dumitriu, S. (1991) Processes with immobilized enzymes and cells, in Bioconversion of Waste Materials to Industrial Products (Martin, A. M., ed.), Elsevier, London, pp. 64–116.

    Google Scholar 

  5. Wehtje, E., Adlercreutz, P., and Mattiasson, B. (1993) Improved activity retention of enzymes deposited on solid supports. Biotechnol. Bioeng. 41, 171–179.

    Article  PubMed  CAS  Google Scholar 

  6. Dua, R. D., Vasudevan, P., and Kumar, S. (1984) Carboxypeptidase immobilization on a cellulosic matrix. J Macromol. Sci. Chem. 21, 43–51.

    Article  Google Scholar 

  7. Crescenzi, V., Dentini, M., and Rizzo, R. (1991) Polyelectrolytic behavior of ionic polysaccharides, in ACS Symposium Series 150. Amencan Chemical Society, Washington, DC, pp. 33l–346.

    Google Scholar 

  8. Yamagiwa, K., Shimizu, Y., Kozawa, T., Onodera, M., and Ohkawa, A. (1992) Formation of calcium-alginate gel coating on biocatalyst immobilization carrier. J. Chem. Eng. Jpn. 25, 723–730.

    Article  CAS  Google Scholar 

  9. Fukuda, H. (1980) Polyelectrolyte complexes of chitosan with sodium carboxy-methylcellulose. Bull. Chem. Soc. Jpn. 53, 837–842.

    Article  CAS  Google Scholar 

  10. Tsuchida, E. and Abe, K. (1986) Polyelectrolyte complexes, in Developments in Ionic Polymers (Wilson, A. D. and Prosser, H. J., eds.), Elsevier, London, pp 191–199.

    Google Scholar 

  11. Williams, P. A., Clegg, S M., Day, D. H., Phillips, G. O., and Nishinari, K. (1991) Mixed gels formed with komjac mannan and xanthan gum, in Food Polymers, Gels, and Colloids (Dickinson, E., ed.), Royal Society of Chemistry, Cambridge, UK, pp. 339–347.

    Chapter  Google Scholar 

  12. Jansson, P. E., Keene, L., and Lindberg, B. (1975) Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr. Res. 45, 275–281.

    Article  PubMed  CAS  Google Scholar 

  13. Stankowski, J. D., Mueller, B. E., and Zeller, S. G. (1983) Location of a second O-acetyl group in xanthan gum by the reductive-cleavage method. Carbohydr. Res. 241, 321–326.

    Article  Google Scholar 

  14. Bekturov, E. and Bimendina, L. A. (1980) Interpolymer complexes. Adv. Polym. Sci. 41, 100–109.

    Google Scholar 

  15. Scranton, A. B., Klier, J., and Aronson, C. L. (1992) Complexation of polymeric acids with polymeric bases, in Polyelectrolyte Gels, Properties, Preparation, and Applications (Harland, R. S. and Prud’homme, R. K., eds), ACS Symposium Series 480, American Chemical Society, Washington, DC, pp. 171–188.

    Chapter  Google Scholar 

  16. Good, W. R. and Mueller, K. F. (1981) Hydrogels and controlled delivery. AIChE Symp. Ser. 77, 42–50.

    CAS  Google Scholar 

  17. Lowry, R. R. and Tinsley, I. J. (1976) Rapid colorimetric determination of free fatty acids. J. Am. Oil. Chem. Soc. 53, 470–472.

    Article  PubMed  CAS  Google Scholar 

  18. Kwan, D. Y. and Rhee, J. S. (1986) A simple and rapid calorimetric method for determination of free fatty acids for lipase assay. J. Am. Oil Chem. Soc. 63, 89–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc , Totowa, NJ

About this protocol

Cite this protocol

Dumitriu, S., Vidal, P., Chornet, E. (1997). Enzyme Immobilization Using Chitosan-Xanthan Complexes. In: Bickerstaff, G.F. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnology, vol 1. Humana Press. https://doi.org/10.1385/0-89603-386-4:229

Download citation

  • DOI: https://doi.org/10.1385/0-89603-386-4:229

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-386-3

  • Online ISBN: 978-1-59259-481-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics