Electrochemical-Based Immobilization of Enzymes

  • David J. Strike
  • Nico F. de Rooij
  • Milena Koudelka-Hep
Part of the Methods in Biotechnology book series (MIBT, volume 1)


Electrochemical-based enzyme immobilization methods are a convenient way of immobilizing enzymes on microelectrodes, albeit one restricted only to amperometric sensors. They enable the immobilization to be localized at one electrode (the working electrode), frequently offer some control of the thickness of the resultant film, and may offer significant interference rejection properties. Furthermore, the immobilization can usually be performed from aqueous solution near neutral pH and can coat complex or otherwise inaccesible surfaces, such as in situ detectors. Although in principle they could be used in mass production to perform on-wafer level modifications (i.e., to immobilize enzyme in separate regions of a whole silicon wafer, prior to dicing it into separate devices) they are usually used only in the final stages on sensor fabrication to modify individual devices. As with the photochemical-based immobilization (see  Chapter 11), electrochemical techniques do require some specialized equipment. In this chapter, we shall describe two depositions, one entrapment in an electrochemically grown polymer, the other electrochemically aided crosslinking.


Potassium Phosphate Saturated Calomel Electrode Glucose Oxidase Alcohol Oxidase Sodium Perchlorate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Foulds, N. C. and Lowe, C. R. (1986) Enzyme entrapment in electrically conducting polymers. J. Chem. Soc., Faraday Trans. 182, 1259–1264.Google Scholar
  2. 2.
    Umana, M. J. and Waller, J. (1986) Protein modified electrodes. The glucose oxidase/polypyrrole system. Anal. Chem. 58, 2979–2983.CrossRefGoogle Scholar
  3. 3.
    Bartlett, P. N. and Whitaker, R. C. J. (1987) Electrochemical immobilization of enzymes. II. Glucose oxidase immobilized inpoly-N-methylpyrrole. J. Electroanal. Chem. 224, 37–48.CrossRefGoogle Scholar
  4. 4.
    Shinohara, H., Chiba, T., and Azawa, M. (1988) Enzyme microsensor for glucose with an electrochemically synthesized enzyme-polyaniline filrm. Sensors Actuators 13, 79–86.CrossRefGoogle Scholar
  5. 5.
    Cooper, J. C. and Hall, E. A. H. (1992) Electrochemical response of an enzyme-loaded polyaniline film. Biosensors Bioelectronics 7, 473–485.CrossRefGoogle Scholar
  6. 6.
    Sasso, S. V., Pierce, R. J., Walla, R., and Yacnych, A. M. (1990) Electropolymerized 1,2-diaminobenzine as a means to prevent interferences and fouling and to stabilize immobilized enzymes in electrochemical biosensors. Anal. Chem. 62, 1111–1117.CrossRefGoogle Scholar
  7. 7.
    Malitesta, C., Palmisano, F., Torsi, L., and Zambonin, P. G. (1990) Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal. Chem. 62, 2735–2740.PubMedCrossRefGoogle Scholar
  8. 8.
    Bartlett, P. N., Tebbutt, P., and Tyrrell, C. H. (1992) Electrochemical immobilization of enzymes. 3. Immobilization of glucose oxidase in thin films of electrochemically polymerized phenols. Anal. Chem. 64, 138–142.CrossRefGoogle Scholar
  9. 9.
    Centonze, D., Guerrieri, A., Malitesta, C., Palmisano, F., and Zambonin, P. G. (1992) Interference-free glucose sensor based on glucose-oxidase immobilized in an overoxidized nonconducting polypyrrole film. Fresenius J. Anal. Chem. 342, 729–733.CrossRefGoogle Scholar
  10. 10.
    Foulds, N. C. and Lowe, C. R. (1988) Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. Anal. Chem. 60, 2473–2478.PubMedCrossRefGoogle Scholar
  11. 11.
    Schuhmann, W., Kranz, C., Huber, J., and Wohlschläger, H. (1993) Conducting polymer-based amperometric enzyme electrodes. Towards the development of miniaturized reagentless biosensors. Synth. Metal. 61, 31–35.CrossRefGoogle Scholar
  12. 12.
    Yon-Hin, B. F. Y. and Lowe, C. R. (1994) An investigation of 3-functionalized pyrrole-modified glucose oxidase for the covalent electropolymerization of enzyme films. J. Electroanal. Chem. 374, 167–172.CrossRefGoogle Scholar
  13. 13.
    Schuhmann, W., Lammert, R., Uhe, B., and Schmidt, H.-L. (1990) Polypyrrole, a new possibility for covalent binding of oxidoreductases to electrode surfaces as a base for stable biosensors. Sensors Actuators B1, 537–541.Google Scholar
  14. 14.
    Schalkhammer, T., Mann-Buxbaum, E., Pittner, F., and Urban, G. (1991) Electrochemical glucose sensors on permselective nonconducting substituted pyrrole polymers. Sensors Actuators B4, 273–281.Google Scholar
  15. 15.
    Cosnier, S., Innocent, C., and Jouanneau, Y. (1994) Amperometric detection of nitrate via a nitrate reductase immobilized and electrically wired at the electrode surface. Anal. Chem. 66, 3198–3201.CrossRefGoogle Scholar
  16. 16.
    Kajiya, Y., Sugai, H., Iwakura, C., and Yoneyama, H. (1991) Glucose sensitivity of polypyrrole films containing immobilized glucose oxidase and hydroquinonesulfonate ions. Anal. Chem. 63, 49–54.CrossRefGoogle Scholar
  17. 17.
    Bartlett P. N. and Birkin P. R. (1993) The application of conducting polymers in biosensors. Synth. Metal. 61, 15–21.CrossRefGoogle Scholar
  18. 18.
    Koopal, C. G. J., Feiters, M. C., Nolte., R. J. M., de Ruiter, B., and Schasfoort, R. B. M. (1992) Glucose sensor utilizing polypyrrole incorporated in track-etch membranes as the mediator. Biosensors Bioelectronics 7, 461–471.CrossRefGoogle Scholar
  19. 19.
    Wang, J., Neser, N., and Renschler, C. (1993) Enzyme nanoband electrodes. Anal. Lett. 26, 1333–1346.Google Scholar
  20. 20.
    Yon Hin, B. F. Y. and Lowe, C. R. (1992) Amperometric response of polypyrrole entrapped bienzyme films. Sensors Actuators B7, 339–342.Google Scholar
  21. 21.
    Bartlett, P. N. and Caruana, D. J. (1994) Electrochemical immobilization of enzymes. VI. Microelectrodes for the detection of L-lactate based on flavocyto-chrome b2 immobilized in a poly(phenol) film. Anal. Chem. 119, 175–180.Google Scholar
  22. 22.
    Yon Hin, B. F. Y., Sethi, R. S., and Lowe, C. R. (1990) Multi-analyte biosensors. Sensors Actuators B1, 550–554Google Scholar
  23. 23.
    Cosnier, S. and Innocent, C. (1992) A novel biosensor elaboration by electropolymerization of an adsorbed amphiphilic pyrrole-tyrosinase enzyme layer. J. Electroanal. Chem. 328, 361–366.CrossRefGoogle Scholar
  24. 24.
    Kajiya, Y., Matsumoto, H., and Yoneyama, H. (1991) Glucose sensivity of poly(pyrrole) films containing immobilized glucose dehydrogenase, nicotinamide adenine dinucleotide and β-naphtholquinonesulphonate ions. J. Electroanal. Chem. 319, 185–194.CrossRefGoogle Scholar
  25. 25.
    Tatsuma, T., Gondaira, M., and Watanabe, T. (1992) Peroxidase-incorporated polypyrrole membrane electrodes. Anal. Chem. 64, 1183–1187.CrossRefGoogle Scholar
  26. 26.
    Slater, J. M. and Watt, E. J. (1989) Use of the conducting polymer, polypyrrole, as a sensor. Anal. Proc. 26, 397–399.CrossRefGoogle Scholar
  27. 27.
    Palmisano, F., Centronze, D., and Zambonin, P. G. (1994) An in situ electrosynthesized amperometric biosensor based on lactate oxidase immobilized in a poly-o-phenylenediamine film: determination of lactate in serum by how injection analysis. Biosensors Bioelectronics 9, 471–479.PubMedCrossRefGoogle Scholar
  28. 28.
    Ikariyama, Y., Yamauchi, S., Yakiashi, T., and Ushioda, H. (1989) Electrochemical fabrication of amperometric microenzyme sensor. J. Electrochem. Soc. 136, 702–706.CrossRefGoogle Scholar
  29. 29.
    Wang, J. and Angnes, L. (1992) Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase on to carbon fibre electrodes. Anal. Chem. 64, 456–459.CrossRefGoogle Scholar
  30. 30.
    Wang, J. and Chen, Q. (1994) Enzyme microelectrode array strips for glucose and lactate. Anal. Chem. 66, 1007–1011.CrossRefGoogle Scholar
  31. 31.
    Anzai, J.-I., Tomonori, T., and Osa, T. (1993). Electrochemical preparation of active avidin films for enzyme sensor applications. Chem. Lett. 1993, 1231–1234.CrossRefGoogle Scholar
  32. 32.
    Johnnson, K. W. (1991) Reproducible electrodeposition of biomolecules for the fabrication of miniature electroenzymatic biosensors. Sensors Actuators B5, 85–89.Google Scholar
  33. 33.
    Strike, D. J., van den Berg, A., de Rooij, N. F., and Koudelka-Hep, M. (1994) Spatially controlled on-wafer and on-chip enzyme immobilization using photo-chemical and electrochemical techniques, in Diagnostic Biosensor Polymers (Usmani A. M. and Akmal N., eds.), ACS Symposium Series 556, American Chemical Society, Washington, DC, pp. 298–306.CrossRefGoogle Scholar
  34. 34.
    Strike, D. J., de Rooij, N. F., and Koudelka-Hep, M. (1995) Electrochemical techniques for the modification of microelectrodes. Biosensors Bioelectronics 10, 61–66.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc , Totowa, NJ 1997

Authors and Affiliations

  • David J. Strike
    • 1
  • Nico F. de Rooij
    • 1
  • Milena Koudelka-Hep
    • 1
  1. 1.Institute of MicrotechnologyUniversity of NeuchatelSwitzerland

Personalised recommendations