Advertisement

Immobilization of Enzymes Acting on Macromolecular Substrates

Reduction of Steric Problems
  • José M. Guisán
  • Guadalupe Penzol
  • Pilar Armisen
  • Agatha Bastida
  • Rosa M. Blanco
  • Roberto Fernandez-Lafuente
  • Eduardo García-Junceda
Part of the Methods in Biotechnology book series (MIBT, volume 1)

Abstract

Substrates of small molecular size can reach the active site of immobilized enzymes without suffering significant steric hindrances generated by the support. The situation is very different when macromolecular substrates are used (Fig. 1). Some of these reactions are of great interest; for example, hydrolysis of starch by amylases, limited proteolysis catalyzed by proteases, and hydrolysis of RNA or DNA by nucleases. Immobilized proteins for affinity chromatography (protein A, antibodies, and so on) are a further example in which the interaction may involve a macromolecule (1). In this chapter, we present three different strategies to reduce the steric problems associated with immobilized enzymes:
  1. 1.

    Use of supports with different internal morphology;

     
  2. 2.

    Preparation of enzyme derivatives with different orientations of the enzyme molecule on the support;

     
  3. 3.

    Use of adequate spacer arms.

     
Fig. 1.

Steric problems in processes catalyzed by immobilized enzymes. When immobilized enzymes act on macromolecular substrates, the presence of the support surface can strongly restrict the access of those substrates to the enzyme active center.

Keywords

Sodium Borohydride Bicarbonate Buffer Sodium Periodate Internal Morphology Potassium Iodide Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hermanson, G. T., Mallia, A. K., and Smith, P. (1992) Immobilized Affinity Ligand Techniques. Academic, San Diego, CA.Google Scholar
  2. 2.
    Carlson, A., Hill, G. C., and Olson, N. F. (1986) The coagulation of milk with immobilized enzymes: a critical review. Enzyme Microb. Technol. 8, 642–650.CrossRefGoogle Scholar
  3. 3.
    Guisán, J. M. (1988) Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes. Enzyme Microb. Technol. 10, 375–382.CrossRefGoogle Scholar
  4. 4.
    Rodriguez, V. (1995) Estabilizacion de enzimas de estructura compleja: biotransformacion enzimatica de antibioticos β-lactamicos. Doctoral Thesis, Universidad Complutense de Madrid.Google Scholar
  5. 5.
    Penzol, G. (1992) Inmovilizacion de proteinas industriales que actuan sobre sustratos macromoleculares. Hidrolisis de caseina por derivados de renina. Doctoral Thesis, Universidad Complutense de Madrid.Google Scholar
  6. 6.
    Monsan, P. (1977) Optimization of glutaraldehyde activation of a support for enzyme immobilization. J. Mol. Cat. 3, 371–384.Google Scholar
  7. 7.
    Fernández-Lafuente, R., Rosell, C., Rodríguez, V., Santana, M. C., Soler, G., Bastida, A., and Guisáan, J. M. (1993) Preparation of activated supports containing low pK amino groups. A new tool for protein immobilization via the carboxyl coupling method. Enzyme Microb. Technol. 15, 546–550.PubMedCrossRefGoogle Scholar
  8. 8.
    Timkovich, R. (1977) Polymerization side reactions during protein modifications with carbodiimide. Biochem. Biophys. Res. Commun. 74, 1463–1468.PubMedCrossRefGoogle Scholar
  9. 9.
    Carraway, K. L. and Koshland, D. E. (1972) Carbodiimide modification of proteins. Meth. Enzymol. 25, 616–650.CrossRefGoogle Scholar
  10. 10.
    Schacht, E.H. (1987) Modification of dextran and application in prodrug design, in Industrial Polysaccharides Engineering: Genetic Engineering, Structure/Property Relations and Applications (Yalpani, M., ed.), Elsevier, Amsterdam.Google Scholar
  11. 11.
    Manin, P., Raymond, M. N., Bricas, E., and Ribadeau, D. B. (1980) Kinetic studies on the action of Mucor pusillus, Mucor mihei acid proteases and chymosins A and B on a synthetic chromophoric hexapeptide. Biochim. Biophys. Acta 612, 410–420.Google Scholar
  12. 12.
    Raymond, M. N., Gamier, J., and Bricas, E. (1972) Studies on the specificity of chymosin (rennin). Biochimie 54, 145–154.PubMedCrossRefGoogle Scholar
  13. 13.
    Mashaly, R. I., Saad, M. H., El-Abassy, R., and Wahban, A. A. (1988) Coagulation of milk by calf rennet, pepsin and Mucor miehei rennet immobilized on large aga-rose beads. Milchwissenschaft 43, 79–82.Google Scholar

Copyright information

© Humana Press Inc , Totowa, NJ 1997

Authors and Affiliations

  • José M. Guisán
    • 1
  • Guadalupe Penzol
    • 1
  • Pilar Armisen
    • 1
  • Agatha Bastida
    • 1
  • Rosa M. Blanco
    • 1
  • Roberto Fernandez-Lafuente
    • 1
  • Eduardo García-Junceda
    • 1
  1. 1.Laboratorio de Technologia EnzymáticaInstituto de Catálisis CSICMadridSpain

Personalised recommendations