Skip to main content

Production of Transgenic Rice (Oryza sativa subspecies japonica cv. Taipei 309)

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 81))

Abstract

Oryza sativa L. has three subspecies: indica, japonica, and javanica. Subsp. indica grows well in southern temperate and tropical regions; subsp. japonica grows well in cooler climates such as Japan; and subsp. javanica is grown mostly in the Americas and Europe. Several viruses infect rice, causing devastating losses in yield. Tungro disease is caused by an association of an RNA genome virus (rice tungro spherical virus) and a DNA genome virus (rice tungro bacilliform virus). Estimated annual yield losses caused by Tungro virus infection of rice exceed $1.5 billion (1). Rice ragged stunt virus causes the second most important viral disease, with economic losses exceeding $140 million annually. Several tenuiviruses are also major pathogens in various rice-growing regions. These include rice grassy stunt virus, which is prevalent in the Philippines; rice stripe virus, which is often found in Japan; and rice hoja blanca virus, which is endemic in Latin America and occurs in sporadic but disastrous outbreaks. Novel biotechnological approaches for resistance, using various pathogen-derived genes, are being explored (2). The production and thorough molecular analysis of transgenic plants by methods such as those described in this chapter and in Chapter 41 are vital toward evaluation of the efficacy of these new approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Herdt, R. W. (1991) Research priorities for rice biotechnology, in Rice Biotechnology (Khush, G. S. and Toenniessen, G. H., eds.), Alden, Oxford, pp. 19–54.

    Google Scholar 

  2. Huntley, C. C. and Hall, T. C. (1996) Interference with brome mosaic virus replication in transgenic rice. Mol. Plant-Microbe Interact. 9, 164–170.

    Article  CAS  Google Scholar 

  3. Sanford, J. C., Klein, T. M., Wolf, E. D., and Allen, N. (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part. Sci. Technol. 5, 27–37.

    Article  CAS  Google Scholar 

  4. Sanford, J. C., Smith, F. D., and Russell, J. A. (1992) Optimizing the biolistic process for different biological applications, in Recombinant DNA, Part H, vol. 217 (Wu, R., ed.), Academic, San Diego, CA, pp. 483–509.

    Google Scholar 

  5. Heiser, W. (1992) Optimization of Biolistic Transformation Using the Helium-Driven PDS-1000/He System. Bio-Rad, Hercules, CA.

    Google Scholar 

  6. Hoshikawa, K. (1989) The growing rice plant: an anatomical monograph. Nobunkyo, Tokyo.

    Google Scholar 

  7. Li, L., Qu, R., de Kochko, A., Fauquet, C., and Beachy, R. N. (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep. 12, 250–255.

    Article  Google Scholar 

  8. Shimamoto, K., Terada, R. T., Izawa, T., and Fujimoto, H. (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 238, 274–276.

    Article  Google Scholar 

  9. Toryama, K., Arimoto, Y., Uchimiya, H., and Hinata, K. (1988) Transgenic rice plants after direct gene transfer into protoplasts. Biotechnology 6, 1072–1074.

    Article  Google Scholar 

  10. Hayashimoto, A., Zhijian, L., and Murai, N. (1990) A polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiol. 93, 857–863.

    Article  PubMed  CAS  Google Scholar 

  11. Battraw, M. and Hall, T. C. (1992) Expression of a chimeric neomycin phosphotransferase II gene in first and second generation transgenic rice plants. Plant Sci. 86, 191–202.

    Article  CAS  Google Scholar 

  12. Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacteriumand sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282.

    Article  PubMed  CAS  Google Scholar 

  13. Dong, J. J., Teng, W. M., Buchholz, W. G., and Hall, T. C. (1996) Agrobacterium-mediated transformation of Javanica rice. Mol. Breeding 2, 267–276.

    Article  CAS  Google Scholar 

  14. Linsmaier, E. and Skoog, F. (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18, 100–127.

    Article  CAS  Google Scholar 

  15. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  16. Dekeyser, R., Claes, B., Marichal, M., Van Montagu, M., and Caplan, A. (1989) Evaluation of selectable markers for rice transformation. Plant Physiol. 90, 217–223.

    Article  PubMed  CAS  Google Scholar 

  17. Mikkelson, D. (1987) University of California, Davis, personal communication.

    Google Scholar 

  18. Battraw, M. J. and Hall, T. C. (1990) Histochemical analysis of CaMV 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Mol. Biol. 15, 527–538.

    Article  PubMed  CAS  Google Scholar 

  19. Flavell, R. B. (1994) Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc. Natl. Acad. Sci. USA 91, 3490–3496.

    Article  PubMed  CAS  Google Scholar 

  20. Finnegan, J. and McElroy (1994) Transgene inactivation: plants fight back! Biotechnology 12, 883–888.

    Article  Google Scholar 

  21. Matzke, M. A. and Matzke, A. J. M. (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol. 107, 679–685.

    PubMed  CAS  Google Scholar 

  22. Tomes, D. (1994) Pretreatment of microprojectiles prior to using in a particle gun. Pioneer Hi-Bred International, International Patent no. W094/17195.

    Google Scholar 

  23. Kumpatla, S. P. (1997) Transgene integrity, chimerism, silencing and stability in rice. Ph.D. Thesis, Texas A&M University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Buchholz, W.G., Teng, W., Wallace, D., Ambler, J.R., Hall, T.C. (1998). Production of Transgenic Rice (Oryza sativa subspecies japonica cv. Taipei 309). In: Foster, G.D., Taylor, S.C. (eds) Plant Virology Protocols. Methods in Molecular Biology™, vol 81. Humana Press. https://doi.org/10.1385/0-89603-385-6:383

Download citation

  • DOI: https://doi.org/10.1385/0-89603-385-6:383

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-385-6

  • Online ISBN: 978-1-59259-566-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics