Advertisement

Mechanisms of RNA-Mediated Resistance to Plant Viruses

  • Peter de Haan
Part of the Methods in Molecular Biology™ book series (MIMB, volume 81)

Abstract

Viral diseases cause significant losses to almost all crops throughout the world. Infections with plant viruses can either cause direct yield losses or lead to unacceptable levels of postharvest damage to the crops. Besides measures to limit the virus incidence, the ultimate way to minimize losses caused by viral infections is the production of resistant varieties. This can be obtained by introgression of resistance genes from wild relatives, or by transformation of host plants with antiviral genes or viral sequences. Expression of viral coat protein (CP) in plants yields protection to the homologous virus. In addition to this CP-mediated protection (CPMR), a still growing number of reports deal with engineered virus resistance conferred by transgenic expression of viral transcripts, rather than proteins.

Keywords

Coat Protein Transgenic Tobacco Plant Plant Virus Virus Resistance Homologous Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fraser, R. S. S. (1986) Genes for resistance to plant viruses. Crit. Rev. Plant Sci. 3, 257–294.CrossRefGoogle Scholar
  2. 2.
    Fraser, R. S. S. (1992) The genetics of plant-virus interactions: implications for plant breeding. Euphytica 63, 175–185.CrossRefGoogle Scholar
  3. 3.
    Sarkar, S. and Smitamana, P. (1981) A proteinless mutant of tobacco mosaic virus: evidence against the role of a viral coat protein for interference. Mol. Gen. Genet. 184, 185–159.CrossRefGoogle Scholar
  4. 4.
    Atkinson, M. M. (1993) Molecular mechanisms of pathogen recognition by plants. Adv. Plant Pathol. 10, 35–64.Google Scholar
  5. 5.
    Tobias, I., Fraser, R. S. S., and Gerwitz, A. (1989) The gene-for-gene relationship between Capsicum annuum L. and tobacco mosaic virus: effects on virus multiplication, ethylene synthesis and accumulation of pathogenesis-related proteins. Physiol. Mol. Plant Pathol. 35, 271–286.CrossRefGoogle Scholar
  6. 6.
    Wilson, T. M. A. (1993) Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc. Natl. Acad. Sci. USA 90, 3134–3141.PubMedCrossRefGoogle Scholar
  7. 7.
    Hull, R. (1994) Resistance to plant viruses: obtaining genes by non-conventional approaches. Euphytica 75, 195–205.CrossRefGoogle Scholar
  8. 8.
    Lapidot, M., Gafny, R., Ding, B., Wolf, S., Lucas, W. J., and Beachy, R. N. (1993) A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J. 4, 959–970.CrossRefGoogle Scholar
  9. 9.
    Beachy, R. N. (1990) Coat protein-mediated resistance against virus infection. Ann. Rev. Phytopathol. 28, 451–474.CrossRefGoogle Scholar
  10. 10.
    Van Dun, C. M. P., Bol, J. F., and Van Vloten-Doting, L. (1987) Expression of alfalfa mosaic virus and tobacco rattle virus coat protein genes in transgenic tobacco plants. Virology 159, 299–305.PubMedCrossRefGoogle Scholar
  11. 11.
    Brederode, F. T., Taschner, P. E. M., Posthumus, E., and Bol, J. F. (1995) Replicase-mediated resistance to alfalfa mosaic virus. Virology 207, 467–474.PubMedCrossRefGoogle Scholar
  12. 12.
    Cuozzo, M., O’Connell, K. M., Kaniewski, W., Fang, R.-X., Chua, N.-H., and Tumer, N. E. (1988) Viral protection in transgenic plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Biotechnology 6, 549–557.CrossRefGoogle Scholar
  13. 13.
    Zaitlin, M., Anderson, J. M., Perry, K. L., Zhang, L., and Palukaitis, P. (1994) Specificity of replicase-mediated resistance to cucumber mosaic virus. Virology 201, 200–205.PubMedCrossRefGoogle Scholar
  14. 14.
    Sijen, T., Wellink, J., Hendriks, J., Verver, J., and Van Kammen, A. (1995) Replication of cowpea mosaic virus RNA1 or RNA2 is specifically blocked in transgenic Nicotiana benthamiana plants expressing full-length replicase or movement protein genes. Mol. Plant-Microbe Interact. 8, 340–347.CrossRefGoogle Scholar
  15. 15.
    Rubino, L. and Lupo, R. (1993) Resistance to Cymbidium ringspot tombusvirus infection in transgenic Nicotiana benthamiana plants expressing a full-length viral replicase gene. Mol. Plant-Microbe Interact. 6, 729–734.CrossRefGoogle Scholar
  16. 16.
    MacFarlane, S. A. and Davies, J. W. (1992) Plants transformed with a region of the 201-kilodalton replicase gene from pea early browning virus RNA1 are resistant to virus infection. Proc. Natl. Acad. Sci. USA 89, 5829–5833.PubMedCrossRefGoogle Scholar
  17. 17.
    Kawchuk, L. M., Martin, R. R., and McPherson, J. (1991) Sense and antisense RNA-mediated resistance to potato leafroll virus in Russet Burbank potato plants. Mol. Plant-Microbe Interact. 3, 247–253.CrossRefGoogle Scholar
  18. 18.
    MacKenzie, D. J., Tremaine, J. H., and McPherson, J. (1991) Genetically engineered resistance to potato virus S in potato cultivar Russet Burbank. Mol. Plant-Microbe Interact. 5, 34–40.CrossRefGoogle Scholar
  19. 19.
    Hemenway, C., Fang, R.-X., Kaniewski, W. K., Chua, N.-H., and Tumer, N. E. (1988) Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J. 7, 1273–1280.PubMedGoogle Scholar
  20. 20.
    Mueller, E., Gilbert, J., Davenport, G., Brigneti, G., and Baulcombe, D. C. (1995) Homology-dependent resistance: transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J. 7, 1001–1013.CrossRefGoogle Scholar
  21. 21.
    Audy, P., Palukaitis, P., Slack, S. A., and Zaitlin, M. (1994) Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Mol. Plant-Microbe Interact. 7, 15–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Maiti, I. B., Murphy, J. F., Shaw, J. G., and Hunt, A. G. (1993) Plants that express a potyvirus proteinase gene are resistant to virus infection. Proc. Natl. Acad. Sci. USA 90, 6110–6114.PubMedCrossRefGoogle Scholar
  23. 23.
    Vardi, E., Sela, I., Edelbaum, O., Livneh, O., Kuznetsova, L., and Stram, Y. (1993). Plants transformed with a cistron of potato virus Y protease (NIa) are resistant to virus infection. Proc. Natl. Acad. Sci. USA 90, 7513–7517.PubMedCrossRefGoogle Scholar
  24. 24.
    Lindbo, J. A. and Dougherty, W. G. (1992) Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189, 725–733.PubMedCrossRefGoogle Scholar
  25. 25.
    Powell-Abel, P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.CrossRefGoogle Scholar
  26. 26.
    Donson, J., Kearney, C. M., Turpen, T. H., Khan, I. A., Kurath, G., Turpen, A. M., Jones, G. E., Dawson, W. O., and Lewandowski, D. J. (1993) Broad resistance to tobamoviruses is mediated by a modified tobacco mosaic virus replicase transgene. Mol. Plant-Microbe Interact. 6, 635–642.PubMedCrossRefGoogle Scholar
  27. 27.
    Van Dun, C. M. P., Overduin, B., Van vloten-Doting, L., and Bol, J. F. (1988) Transgenic tobacco expressing tobacco streak virus ormutated alfalfa mosaic virus coat protein gene does not cross-protect against alfalfa mosaic virus infection. Virology 164, 383–389.PubMedCrossRefGoogle Scholar
  28. 28.
    De Haan, P., Gielen, J. J. L., Prins, M., Wijkamp, M. G., Van Schepen, A., Peters, D., Van Grinsven, M. Q. J. M., and Goldbach, R. W. (1992) Characterisation of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Biotechnology 10, 1133–1137.PubMedCrossRefGoogle Scholar
  29. 29.
    Prins, M., Ismayadi, C., De Graauw, W., De Haan, P., and Goldbach R. (1997) RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants expressing NSm gene sequences. Plant Mol. Biol. 33, 235–243.PubMedCrossRefGoogle Scholar
  30. 30.
    Goldbach, R. and De Haan, P. (1994) RNA viral Supergroups and the evolution of RNA viruses, in The Evolutionary Biology of Viruses (Morse, S. S., ed.), Raven, New York, pp. 105–119.Google Scholar
  31. 31.
    Deom, C. M., Lapidot, M., and Beachy, R. N. (1992) Plant virus movement proteins. Cell 69, 221–224.PubMedCrossRefGoogle Scholar
  32. 32.
    Osbourn, J. K., Watts, J. W., Beachy, R. N., and Wilson, T. M. A. (1989) Evidence that nucleocapsid disassembly and a later step in virus replication are inhibited in transgenic tobacco protoplasts expressing TMV coat protein. Virology 172, 370–373.PubMedCrossRefGoogle Scholar
  33. 33.
    Goldbach, R. and De Haan, P. (1993) Prospects of engineered forms of resistance against tomato spotted with virus. Sem. Virol. 4, 381–387.CrossRefGoogle Scholar
  34. 34.
    Bejarano, E. R., Day, A. G., Paranjape, V., and Lichtenstein, C. P. (1992) Antisense genes as tools to engineer virus-resistance in plants. Biochem. Soc. Trans. 20, 757–761.PubMedGoogle Scholar
  35. 35.
    Kormelink, R., Storms, M., Van Lent, J., Peters, D., and Goldbach, R. (1994) Expression an subcellular localization of the NSm protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200, 56–65.PubMedCrossRefGoogle Scholar
  36. 36.
    Smith, H. A., Swaney, S. L., Parks, T. D., Wernsman, E. A., and Dougherty, W. G. (1994) Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation and fate of nonessential RNAs. Plant Cell 6, 1441–1453.PubMedCrossRefGoogle Scholar
  37. 37.
    Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M., and Dougherty, W. G. (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5, 1749–1759.PubMedCrossRefGoogle Scholar
  38. 38.
    Bourque, J. E. (1995) Antisense strategies for genetic manipulations in plants. Plant Sci. 105, 125–149.CrossRefGoogle Scholar
  39. 39.
    Schiebel, W., Haas, B., Marikovic, S., Klanner, A., and Sänger, H. L. (1993) RNA-directed RNA polymerase from tomato leaves. II. catalytic in vitro properties. J. Biol. Chem. 268, 11,858–11,867.PubMedGoogle Scholar
  40. 40.
    Dorssers, L. (1983) RNA-dependent RNA polymerases from cowpea mosaic virus-infected cowpea leaves. PhD Thesis, Wageningen Agricultural University, The Netherlands.Google Scholar
  41. 41.
    Van Blokland, R., Van der Geest, N., Mol, J. N. M., and Kooter, J. M. (1994) Trans-gene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Plant J. 6, 861–877.CrossRefGoogle Scholar
  42. 42.
    Grierson, D., Fray, R. G., Hamilton, A. J., Smith, C. J. S., and Watson, C. F. (1991) Does co-suppression of sense genes in transgenic plants involve antisense RNA. Trends Biotechnol. 9, 122,123.CrossRefGoogle Scholar
  43. 43.
    De Carvalho Niebel, F, Frendo, P., Van Montagu, M., and Cornelissen, M. (1995) Post-transcriptional co-suppression of β-1,3-glucanase genes does not affect accumulation of transgene nuclear mRNA. Plant Cell 7, 347–358.Google Scholar
  44. 44.
    Kumagai, M. H., Donson, J., Della-Cioppa, G, Harvey, D., Hanley, K., and Grill, L. K. (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. USA 92, 1679–1683.PubMedCrossRefGoogle Scholar
  45. 45.
    Matzke, M. A. and Matzke, A. J. M. (1995) How and why do plants inactivate homologous (trans)genes. Plant Physiol. 107, 679–685.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Peter de Haan
    • 1
  1. 1.S&G Seeds B. V.EnkhuizenHolland

Personalised recommendations