HIV Protocols pp 205-211 | Cite as

Detection of Polymorphisms in the HIV-1 Coreceptor CCR5 Using Single-Strand Conformation Polymorphism

  • Maureen P. Martin
  • Mary Carrington
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 17)


The CCR5 gene encodes a cell-surface chemokine receptor molecule, which serves as a coreceptor for macrophage-tropic strains of HIV-1 (1, 2, 3). Mutations in this gene may alter expression or function of the protein product, thereby altering chemokine binding or HIV-1 infection of cells on which the receptor is normally expressed. Indeed, it was recently shown that individuals homozygous for a mutant allele (CCR5-△32) characterized by a 32-bp deletion in the coding region of the CCR5 gene, are relatively resistant to HIV-1 infection (4, 5, 6). This allele causes a frame shift at amino acid 185, and homozygous individuals fail to express detectable cell-surface CCR5 molecules. It is possible that other as-yet unidentified variants play a role in HIV-1 infectivity and outcome. Several additional mutations, most of which are single-base substitutions, have been identified in the coding region of the CCR5 gene using the single-strand conformation polymorphism (SSCP) technique (7).


Polymerase Chain Reaction Product Ammonium Persulfate SSCP Analysis Bromphenol Blue CCR5 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1996) CC CKR5: A RANTES, MIP-1a, MIP-1b receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1962.PubMedCrossRefGoogle Scholar
  2. 2.
    Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Di Marzio, P., Marmon, A., Sutton, R., and Hill, C. M. (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.PubMedCrossRefGoogle Scholar
  3. 3.
    Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., and Paxton, W. A. (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR5. Nature 381, 667–673.PubMedCrossRefGoogle Scholar
  4. 4.
    Dean, M., Carrington, M., Winkler, C., Huttley, G. A., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S.P., Vittinghoff, E., Gomperts, E., et al. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856–1862.PubMedCrossRefGoogle Scholar
  5. 5.
    Samson, M., Libert, F., Doranz, B. J., Rucker, J., Liesnard, C, Farber, C.-M., Saragosti, S., Lapouméroulie, C., Cognaux, J., Forceille, C, et al. (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., MacDonald, M., Stuhlmann, H., Koup, R. A., and Landau, N. R. (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377.PubMedCrossRefGoogle Scholar
  7. 7.
    Carrington, M., Kissner, T., Gerard, B., Ivanov, S., O’Brien, S. J., and Dean, M. (1997) Novel alleles of the chemokine receptor gene CCR5. Am.J.Hum. Genet. 61,1261–1267.PubMedCrossRefGoogle Scholar
  8. 8.
    Orita, M., Suzuki, Y., Sekiya, T., and Hayashi, K. (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879.PubMedCrossRefGoogle Scholar
  9. 9.
    Glavac, D. and Dean, M. (1993) Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations. Hum. Mutation 2,404–414.CrossRefGoogle Scholar
  10. 10.
    Dean, M., White, M. B., Amos, J., Gerrard, B., Stewart, C., Khaw, K., and Leppert, M. (1990) Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell 61, 863–870.PubMedCrossRefGoogle Scholar
  11. 11.
    Ravnik-Glavac, M., Glavac, D., and Dean, M. (1994) Sensitivity of single-strand conformation polymorphism and heteroduplex method for mutation detection in the cystic fibrosis gene. Hum Mol Genet 3, 801–807.PubMedCrossRefGoogle Scholar
  12. 12.
    Mashiyama, S., Murakami, Y., Yoshimoto, T., and Sekiya, T. (1991) Detection of p53 gene mutations in human brain tumors by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene 6, 1313–1318.PubMedGoogle Scholar
  13. 13.
    Carrington, M., Miller, T., White, M., Gerrard, B., Stewart, C., Dean, M., and Mann, D. (1992) Typing of HLA-DQA1 and DQB1 using DNA single-strand conformation polymorphism. Hum Immunol 33, 208–212.PubMedCrossRefGoogle Scholar
  14. 14.
    Hayashi, K. (1991) PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl 1, 34–38.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Maureen P. Martin
    • 1
  • Mary Carrington
    • 1
  1. 1.NCI-Frederick Cancer Research and Development CenterFrederick

Personalised recommendations