Skip to main content

Assessing Cell-Mediated Immune Responses to HSV in Murine Systems

  • Protocol
Herpes Simplex Virus Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 10))

Abstract

Protective immunity against a eajority of viral infections is mediated by a combination of both humoral and cell-mediated immune responses. However, in the case of herpesvirus infections, where viral spread is largely cell-to-cell, cell-mediated immune mechanisms (which facilitate the clearance of virally infected cells) are particularly important (14). Moreover, cell-mediated immunity (CMI) has also been implicated in the establishment and/or reactivation of latent herpes simplex virus (HSV) infection (5,6). Thus, a major focus of herpesvirus immunology continues to be the identification of those herpesvirus antigens that serve as targets for CMI and the means by which protective responses can be optimally induced. Clearly this information is critical for the rational development of effective vaccine strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nash, A A., Leung, K-N., Wiley, P (1985) The T-cell mediated immune response of mice to herpes simplex virus, in The Herpes Simplex Virus, vol. 4 (Roizman, B. Lopez, C., eds), Plenum, New York, pp. 87–95

    Google Scholar 

  2. Martin, S Rouse, B T (1990) The control of human herpesvirus infections by cytotoxic T lymphocytes (CTL): a comparison to AIDS virus specific CTL, in Herpesvirus, the Immune System and AIDS (Aurelian L ed), Kluwer, Nowell, MA, pp.73–98

    Google Scholar 

  3. Martin, S, Cantin, E., Rouse, B. T. (1988) Cytotoxic T lymphocytes-their relevance in herpesvirus infections Ann NY Acad Sci 532, 257–272.

    Article  PubMed  CAS  Google Scholar 

  4. Rouse, B. T., Norley, S., Martin, S. (1988) Antiviral cytotoxic T lymphocyte induction and vaccination. Rev Infect Dis 10, 16–33

    Article  PubMed  CAS  Google Scholar 

  5. Bonneau, R. H. Jennings, S. R. (1989) Modulation of acute and latent herpes virus infection in C57BL/6 mice by adoptive transfer of immune lymphocytes with cytolytic activity. J Virol 63, 1480–1484

    PubMed  CAS  Google Scholar 

  6. Stevens, J G (1989) Human herpesviruses* a consideration of the latent state Microbiol Revs 53, 318–332

    CAS  Google Scholar 

  7. Bjorkman, P. J., Saper, M. A., Samraout, B., Bennet, W, Stominger, J. L., Wiley, D C (1987) The foreign antigen binding site and T-cell recognition regions of class I histocompatibility antigens. Nature 329, 512–515.

    Article  PubMed  CAS  Google Scholar 

  8. Kupfer, A. Singer, S J. (1989) Cell biology of cytotoxic and helper T-cell functions. Annu. Rev Immunol 7, 309–337.

    Article  PubMed  CAS  Google Scholar 

  9. Banks, T A., Allen, E. A., Dasgupta, S., Sandri-Goldin, R, Rouse, B T. (1991) Herpes simplex virus type 1-specific cytotoxic T lymphocytes recognize immediate-early protein ICP27. J Virol. 65, 3185–3191.

    PubMed  CAS  Google Scholar 

  10. Banks, T. A., Nair, S, Rouse, B. T (1993) Recognition by and in vitro induction of cytotoxic T lymphocytes against predicted epitopes of the immediate-early protein ICP27 of herpes simplex virus J Virol 67, 613–616.

    PubMed  CAS  Google Scholar 

  11. Banks, T. A., Jenkins, F. J., Kanangat, S., Nair, S., Dasgupta, S., Foster, C. M., Rouse, B T (1994) Vaccination with the immediate-early protein ICP47 of herpes simplex virus-type 1 (HSV-1) induces virus-specific lymphoproliferation, but fails to protect against lethal challenge. Virology 200, 236–245

    Article  PubMed  CAS  Google Scholar 

  12. Martin, S, Cantin, E., Rouse, B. T. (1989) Evaluation of antiviral immunity using vaccinia virus recombinants expressing cloned genes for herpes simplex virus type 1 glycoproteins. J Gen Virol 70, 1359–1370

    Article  PubMed  CAS  Google Scholar 

  13. Hanke, T., Graham, F L, Rosenthal, K. L., Johnson, D. C. (1991) Indentification of an immunodominant cytotoxic T-lymphocyte recognition site in glycoprotem B of herpes simplex virus by using recombinant adenovirus vectors and synthetic peptides. J. Virol. 65, 1177–1186

    PubMed  CAS  Google Scholar 

  14. Witmer, L. A., Rosenthal, K. L, Graham, F. L, Frtedman, H M., Yee, A., Johnson, D C (1990) Cytotoxtc T lymphocytes specific for herpes stmplex virus (HSV) studied using adenovirus vectors expressing HSV glycoproteins J Gen Virol 71, 387–396

    Article  PubMed  CAS  Google Scholar 

  15. Johnson, D. C., Ghosh-Choudhury, G., Smdey, J. R, Fallis, L, Graham, F L (1988) Abundant expresston of herpes simplex virus glycoprotein gB using an adenovirus vector. Virology 164, 1–14.

    Article  PubMed  CAS  Google Scholar 

  16. McDermott, M R., Graham, F. L, Hanke, T, Johnson, D C (1989) Protection of mice agamst lethal challenge with herpes simplex virus by vaccmation with an adenovirus vector expressing HSV glycoprotein B Virology 169, 244247

    Google Scholar 

  17. Irwin, M J., Laube, L S, Lee, V, Austin, M, Chada, S., Anderson, C G, Townsend, K, Jolly, D J, Warner, J. F (1994)Direct injection of a recombinant retrovtial vector induces human tmmunodefictency virusspecific nnmune responses in mice and nonhuman prtmates J Virol 68, 5036–5044

    PubMed  CAS  Google Scholar 

  18. Ulmer, J B, Donnelly, J. J., Parker, S. E., Rhodes, G H., Felgner, P. L., Dwarkr, V. J., Gromkowskt, S. H., Deck, R. R., DeWitt, C. M., Friedman, A., Hawe, L. A., Leander, K R, Martmez, D, Perry, H C, Shiver, J W, Montgomery, D L, Liu, M. A. (1993) Heterologous protection against influenza by injection of DNA encoding a vtial protein Sczence 259, 1745–1749.

    Article  CAS  Google Scholar 

  19. Tang, D. C., Devrt, M., Johnson, S A. (1992) Genettc tmmunisation is a simple method for eliciting an immune response Nature 356, 152–154

    Article  PubMed  CAS  Google Scholar 

  20. Mishell, B. B, Shngl, S M, Henry, C, Chan, E L, North, J, Galhly, R., Slomtch, M., Miller, K., Marbrook, J, Parks, D, Good, A H (1980)Preparation of mouse cell suspensions, in Selected Methods In Cellular Immunology (Mishell, B B. Shiigt, S. M., eds), Freeman, New York, p 23

    Google Scholar 

  21. Sherman, L A, Vittello, A, Khnman, N R (1983) T cell and B cell responses to viral antigens at the clonal level. Annu Rev. Immunol 1, 63–86.

    Article  PubMed  CAS  Google Scholar 

  22. Rouse, B T, Larsen, H S., Wagner, H. (1983) Frequencey of cytotoxtc T-lymphocyte precursors to herpes simplex virus type 1 as determined by hmiting dilution analysts. Infect Immun 39, 785–792.

    PubMed  CAS  Google Scholar 

  23. Rouse, B. T. Wagner, H. (1984) Frequency of herpes simplex virus-specific cytotoxic T lymphocytes precursors in lymph node cells of infected mice. Zmmunology 51, 57–64

    CAS  Google Scholar 

  24. Taswell, C. (1981) Ltmrting dilution assays for the determmation of immunocompetenT-cell frequenctes 1. Data analysis. J Zmmunol 126, 161–1620.

    Google Scholar 

  25. Mosmann, T R, Chertwmski, H, Bond, M. W., Giedlin, M. A, Coffman, R L. (1986) Two types of murine helper T-cell clones I Definition according to profiles of lymphokme activties, and secreted proteins J Immunol 136, 2348–2357

    PubMed  CAS  Google Scholar 

  26. Mosmann, T R Coffman, R L (1989) Th1 and Th2 cells Dtfferent patterns of lymphokine secretion lead to different functional properttes Annu Rev Immunol. 7, 145.

    Article  PubMed  CAS  Google Scholar 

  27. Romagnam, S (1991) Human Thl and Th2 subsets: doubts no more. Immunol Today 12, 256.

    Article  Google Scholar 

  28. Kapsenberg, M. L, Wterenga, E. A, Bos, J. D., Jansen, H M (1991) Functional subsets of allergen-reactive human CD4 T-cells. Immunol Today 12, 392

    Article  PubMed  CAS  Google Scholar 

  29. Mosmann, T. R. Coffman, R. L. (1989) Heterogeneity and cytokine secretion patterns and functions of helper T-cells. Adv Immunol 46, 111–147

    Article  PubMed  CAS  Google Scholar 

  30. Horohov, D W., Moore, R N, Rouse, B. T (1985) Herpes simplex virus-specific lymphoprohferation: an analysis of the mvolement of lymphocyte subsets. Immunobiol 170, 460–473

    CAS  Google Scholar 

  31. Falk, K, Rotzschke, O., Stevanovic, S., Jung, G, Rammensee, H G (1991) Allele specific motifs revealed by sequencing of self peptides eluted from MHC molecules Nature 351, 290–296

    Article  PubMed  CAS  Google Scholar 

  32. Elliot, T., Smith, M., Dnscoll, P., McMichael, A. (1993) Peptide selection by class I molecules of the major histocompatibility complex. Current Biol. 3, 854–866

    Article  Google Scholar 

  33. Burrows, S. R., Suhrbier, A., Khanna, R., Moss, D. J. (1992) Raprd visual assay of cytotoxrc T-cell specificity uttlizing synthetic peptide Induced T-cell-T-cell killing. Immunology 76, 174,175

    Google Scholar 

  34. Chen, W, McCluskey, J., Rodda, S., Carbone, F. R. (1993) Changes at peptide residues burred in the major histocompatibility complex (MHC) class I binding cleft influence T-cell recognmon* a possible role for indirect or bound peptide in determining T-cell recognition. J. Exp Med 177, 869–873.

    Article  PubMed  CAS  Google Scholar 

  35. Bednarek, M. A., Sauma, S Y., Gaminon, M. C, Porter, G., Tandrankar, S, Wtlhamson, A. R, Zweennk, H J. (1991) The mnnmum peptide epitope from the mflueza virus matrrx protein. extra and intra cellular loading of HLA-A2 J Immunol. 147, 4047–4053

    PubMed  CAS  Google Scholar 

  36. Sciba, M. (1975) Herpes simplex mfection in gumea pigs An animal model for studying latent and recurrent herpes simplex infection. Infect Immun 12, 162–165

    Google Scholar 

  37. Meyers-Elliot, R. H Chitjan, P (1981) Immunopathogenesis of cornea1 inflammation in herpes simplex virus stromal keratits: role of the polymoprhonuclear leukocyte. Invest Opthalmol. Visual Sci 20, 78l–798

    Google Scholar 

  38. Mester, J. M. Rouse, B. T (1991) The mouse model and understanding immunity to herpes simplex virus. Rev Infect Dis 13, S835–945

    Google Scholar 

  39. Simmons, A Nash, A. A (1984) Zostertform spread of herpes stmplex virus as a model of recrudescence and its use to investigate the role of immune cells in prevention of recurrent dtsease. J. Viral. 52, 816–821.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Banks, T.A., Hariharan, M.J., Rouse, B.T. (1998). Assessing Cell-Mediated Immune Responses to HSV in Murine Systems. In: Brown, S.M., MacLean, A.R. (eds) Herpes Simplex Virus Protocols. Methods in Molecular Medicine, vol 10. Humana Press. https://doi.org/10.1385/0-89603-347-3:327

Download citation

  • DOI: https://doi.org/10.1385/0-89603-347-3:327

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-347-4

  • Online ISBN: 978-1-59259-594-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics