Skip to main content

Crystallization of Macromolecules for Three-Dimensional Structure Determination

  • Protocol
Herpes Simplex Virus Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 10))

  • 589 Accesses

Abstract

The last decade has seen a remarkable flourishing of the biological structure field. This blossoming has brought an explosion of stereochemical information, and has been made possible by the combined improvement in techniques of X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and the bulk preparation of biological materials. Most crucial, however, has been the desire of the experimental biologists to follow research problems to the level of stereochemistry, which is the ultimate reductionist limit of molecular biology. This aim has been driven by the anticipation that such knowledge may permit better understanding and even engineering of biological function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savva, R., McAuley-Hecht, K, Brown, T., and Pearl, L. (1995) The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 373, 487–493

    Article  PubMed  CAS  Google Scholar 

  2. Pley, H W, Flaherty, K M, and McKay, D B (1994) Three-dimensional structure of a hammerhead ribozyme Nature 372, 68–74

    Article  PubMed  CAS  Google Scholar 

  3. Scott, W. G., Finch, J. T., and Klug, A. (1995a) The crystal structure of an all-RNA hammerhead ribozyme. a proposed mechanism for RNA catalytic cleavage Cell 81, 991–1002

    Article  PubMed  CAS  Google Scholar 

  4. Joachimiak, A. and Sigler, P B. (1991) Crystallization of protein-DNA complexes Methods Enzymol 208, 82–99

    Article  PubMed  CAS  Google Scholar 

  5. Darst, S. A, Kubalek, E. W, Edwards, A. M, and Kornberg, R D. (1991) Twodimensional and epitaxial crystallization of a mutant form of yeast RNA polymerase II J Mol Biol. 221, 347–357.

    Article  PubMed  CAS  Google Scholar 

  6. Dueruix, A and Giege, R. (1992) Crystallization of Nucleic acids and Proteins A Practical Approach IRL, Oxford University, Oxford, UK.

    Google Scholar 

  7. Carter, C W., Jr and Carter, C W (1979) Protein crystallization using incomplete factorial experiments J Biol Chem 254, 12,219–12,223

    PubMed  CAS  Google Scholar 

  8. Abergel, C, Moulard, M, Moreau, H., Loret, E., Cambillau, C., and Fontecilla-Camps, J. C. (1991) Systematic use of the incomplete factorial approach in the design of protein crystallization experiments J.Biol Chem 266, 20,131–20,138

    PubMed  CAS  Google Scholar 

  9. Jancarik, J. and Kim, S-H. (1991) Sparse matrix sampling. a screening method for crystallization of proteins J Appl Crystallogr 21, 67–71.

    Google Scholar 

  10. Scott, W. G, Finch, J T, Grenfell, R., Fogg, J., Smith, T, Gait, M J, and Klug, A. (1995) Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedure J Mol Biol 250, 327–332.

    Article  PubMed  CAS  Google Scholar 

  11. Doudna, J A., Grosshans, C, Gooding, A, and Kundrot, C. E. (1993) Crystallization of ribozymes and small RNA motifs by a sparse matrix approach Proc Natl Acad Sci USA 90, 7829–7833

    Article  PubMed  CAS  Google Scholar 

  12. Blundell, T L and Johnson, L N. (1976) Protein Crystallography Academic, London.

    Google Scholar 

  13. Hegde, R S, Grossman, S R., Laimins, L. A., and Sigler, P B (1992) Crystal structure at 1.7 Å of the bovie papillomavu-1 E2 DNA-binding domain bound to its DNA target. Nature 359, 505–512

    Article  PubMed  CAS  Google Scholar 

  14. Gamblin, S. J. and Rogers, D. W (1993) Some practical details of data collection at 100 K, in Data Collection and Processing Proceedings of the CCP4 Study Weekend (Sawyer, L, Isaacs, N, and Bailey, S., eds.), SERC Daresbury Laboratory, Warrington, UK

    Google Scholar 

  15. Hope, H. (1988) Cryocrystallography of biological macromolecules: a generally applicable method Acta Cryst B44, 22–26

    CAS  Google Scholar 

  16. Nagai, K., Oubridge, C., Jessen, T.-H, Li, J., and Evans, P R. (1990) Crystal structure of the RNA-binding domain of the Ul small ribonucleoprotein A Nature 348, 515–520.

    Article  PubMed  CAS  Google Scholar 

  17. Edwards, A. M, Darst, S A, Hemming, S. A, Li, Y, and Kornberg, R. D. (1994) Epitaxial growth of protein crystals on lipid layers. Nature Struct Biol l(3), 195–197

    Article  Google Scholar 

  18. Kubalek, E W, LeGrice, S F J, and Brown, P. O. (1994) Two-dimensional crystallization of histidme-tagged, HIV-l reverse transcriptase promoted by a novel nickel-chelating lipid. J Struct Biol 113, 117–123

    Article  PubMed  CAS  Google Scholar 

  19. Scopes, R (1987) Protein Purification Principles and Practice Springer-Verlag, New York.

    Google Scholar 

  20. Mann, M. and Wilm, M. (1995) Electrospray mass spectrometry for protein characterization. Trends Biochem Sei 20, 219–224

    Article  CAS  Google Scholar 

  21. Grisshammer, R. and Nagai, K. (1994) Purification of over-produced proteins from E coli cells, in DNA Cloning 2 Expresson Systems A Practical Approach (Glover, D M. and Hanes, B D., eds.), IRL, Oxford, UK.

    Google Scholar 

  22. Lapthorn, A J, Harris, D. C, Littlejohn, A., Lustbader, J W, Canfield, R. E, Machin, K. J., Morgan, F. J and Isaacs, N W (1994) Crystal structure of human chornionic gonadotropin Nature 369, 455–461

    Article  PubMed  CAS  Google Scholar 

  23. Bentley, G. A, Boulot, G, Karjalamen, K, and Mariuzza, R A (1995) Crystal structure of the β chain of a T-cell antigen receptor Science 267, 1985–1987

    Article  Google Scholar 

  24. Manjunath, P and Sairam, M. R (1982)J Blol Chem 257, 7109–7115

    CAS  Google Scholar 

  25. Pieles, U, Zurcher, W., Schar, M, and Moser, H E (1993) Matrix-assistedlaserdesorption-ionization time-of-flight mass spectrometry. a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides Nucleic Acids Res 21, 3191–3196.

    Article  PubMed  CAS  Google Scholar 

  26. Brooksbank, R (1994) PhD thesis Umversity of Cambridge

    Google Scholar 

  27. Everett, R. D., Barlow, P., Milner, A, Luisi, B., Orr, A, Hope, G, and Lyon, D (1993) A novel arrangement of zinc-binding residues and secondary structure in the C3HC4 motif of an alpha herpes virus protein family. J MOl Biol 234, 1038–1047

    Article  PubMed  CAS  Google Scholar 

  28. Braig, K, Otwinoski, Z, Hegde, R., Boisvert, D C, Joachimiak, A, Horwich, A L, and Sigler, P B (1994) The crystal structure of the bacterial chaperonin GroEL at 2 8 Ã… resolution. Nature 371, 578

    Article  PubMed  CAS  Google Scholar 

  29. Oubridge, C, Ito, N., Evans, P R, Teo, C.-H, and Nagai, K. (1994) Crystal structure at 1 92 A resolution of the RNA-binding domain of the UlA spliceosomal protein complexed with an RNA hairpin Nature 372, 432–438

    Article  PubMed  CAS  Google Scholar 

  30. Jacobo-Molina, A, Ding, J., Nanni, R G., Clark, A D, Lu, X, Tantillo, C., Williams, R. L., Kame, G., Ferris, A. L., Clark, P., Hizi, A, Hughes, S H, and Arnold, E (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double stranded DNA at 3.0 Ã… resolution shows bent DNA Proc. Natl Acad Sci USA 90, 6320

    Article  PubMed  CAS  Google Scholar 

  31. Rini, J M, Stanfield, R. L, Stura, E A, Salinas, P A., Profy, A T, and Wilson, I A (1993) Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50 1, in complex with its V3 loop peptide antigen Proc Natl Acad Sci USA 90, 6325–6329

    Article  PubMed  CAS  Google Scholar 

  32. Prongay, A. J., Smith, T J, Rossman, M G, Ehrlich, L S, Carter, C A, and McClure, J. (1990) Preparation and crystallization of a human immunodeficiency virus p24-Fab complex Proc Natl Acad Sci USA 87, 9980–9984

    Article  PubMed  CAS  Google Scholar 

  33. Tormo, J, Fita, I., Kanzler, O., and Blaas, D. (1990) Crystallization and preliminary X-ray diffraction studies of the Fab fragment of a neutralizing monoclonal antibody directed against human rhinovirus serotype 2. J Biol. Chem. 265, 16,799–16,800.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Luisi, B., Anderson, M., Hope, G. (1998). Crystallization of Macromolecules for Three-Dimensional Structure Determination. In: Brown, S.M., MacLean, A.R. (eds) Herpes Simplex Virus Protocols. Methods in Molecular Medicine, vol 10. Humana Press. https://doi.org/10.1385/0-89603-347-3:157

Download citation

  • DOI: https://doi.org/10.1385/0-89603-347-3:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-347-4

  • Online ISBN: 978-1-59259-594-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics