Advertisement

Crystallization of Macromolecules for Three-Dimensional Structure Determination

  • Ben Luisi
  • Marie Anderson
  • Graham Hope
Part of the Methods in Molecular Medicine book series (MIMM, volume 10)

Abstract

The last decade has seen a remarkable flourishing of the biological structure field. This blossoming has brought an explosion of stereochemical information, and has been made possible by the combined improvement in techniques of X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and the bulk preparation of biological materials. Most crucial, however, has been the desire of the experimental biologists to follow research problems to the level of stereochemistry, which is the ultimate reductionist limit of molecular biology. This aim has been driven by the anticipation that such knowledge may permit better understanding and even engineering of biological function.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Protein Crystal Electron Microscope Grid Guanidinium Hydrochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Savva, R., McAuley-Hecht, K, Brown, T., and Pearl, L. (1995) The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 373, 487–493PubMedCrossRefGoogle Scholar
  2. 2.
    Pley, H W, Flaherty, K M, and McKay, D B (1994) Three-dimensional structure of a hammerhead ribozyme Nature 372, 68–74PubMedCrossRefGoogle Scholar
  3. 3.
    Scott, W. G., Finch, J. T., and Klug, A. (1995a) The crystal structure of an all-RNA hammerhead ribozyme. a proposed mechanism for RNA catalytic cleavage Cell 81, 991–1002PubMedCrossRefGoogle Scholar
  4. 4.
    Joachimiak, A. and Sigler, P B. (1991) Crystallization of protein-DNA complexes Methods Enzymol 208, 82–99PubMedCrossRefGoogle Scholar
  5. 5.
    Darst, S. A, Kubalek, E. W, Edwards, A. M, and Kornberg, R D. (1991) Twodimensional and epitaxial crystallization of a mutant form of yeast RNA polymerase II J Mol Biol. 221, 347–357.PubMedCrossRefGoogle Scholar
  6. 6.
    Dueruix, A and Giege, R. (1992) Crystallization of Nucleic acids and Proteins A Practical Approach IRL, Oxford University, Oxford, UK.Google Scholar
  7. 7.
    Carter, C W., Jr and Carter, C W (1979) Protein crystallization using incomplete factorial experiments J Biol Chem 254, 12,219–12,223PubMedGoogle Scholar
  8. 8.
    Abergel, C, Moulard, M, Moreau, H., Loret, E., Cambillau, C., and Fontecilla-Camps, J. C. (1991) Systematic use of the incomplete factorial approach in the design of protein crystallization experiments J.Biol Chem 266, 20,131–20,138PubMedGoogle Scholar
  9. 9.
    Jancarik, J. and Kim, S-H. (1991) Sparse matrix sampling. a screening method for crystallization of proteins J Appl Crystallogr 21, 67–71.Google Scholar
  10. 10.
    Scott, W. G, Finch, J T, Grenfell, R., Fogg, J., Smith, T, Gait, M J, and Klug, A. (1995) Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedure J Mol Biol 250, 327–332.PubMedCrossRefGoogle Scholar
  11. 11.
    Doudna, J A., Grosshans, C, Gooding, A, and Kundrot, C. E. (1993) Crystallization of ribozymes and small RNA motifs by a sparse matrix approach Proc Natl Acad Sci USA 90, 7829–7833PubMedCrossRefGoogle Scholar
  12. 12.
    Blundell, T L and Johnson, L N. (1976) Protein Crystallography Academic, London.Google Scholar
  13. 13.
    Hegde, R S, Grossman, S R., Laimins, L. A., and Sigler, P B (1992) Crystal structure at 1.7 Å of the bovie papillomavu-1 E2 DNA-binding domain bound to its DNA target. Nature 359, 505–512PubMedCrossRefGoogle Scholar
  14. 14.
    Gamblin, S. J. and Rogers, D. W (1993) Some practical details of data collection at 100 K, in Data Collection and Processing Proceedings of the CCP4 Study Weekend (Sawyer, L, Isaacs, N, and Bailey, S., eds.), SERC Daresbury Laboratory, Warrington, UKGoogle Scholar
  15. 15.
    Hope, H. (1988) Cryocrystallography of biological macromolecules: a generally applicable method Acta Cryst B44, 22–26Google Scholar
  16. 16.
    Nagai, K., Oubridge, C., Jessen, T.-H, Li, J., and Evans, P R. (1990) Crystal structure of the RNA-binding domain of the Ul small ribonucleoprotein A Nature 348, 515–520.PubMedCrossRefGoogle Scholar
  17. 17.
    Edwards, A. M, Darst, S A, Hemming, S. A, Li, Y, and Kornberg, R. D. (1994) Epitaxial growth of protein crystals on lipid layers. Nature Struct Biol l(3), 195–197CrossRefGoogle Scholar
  18. 18.
    Kubalek, E W, LeGrice, S F J, and Brown, P. O. (1994) Two-dimensional crystallization of histidme-tagged, HIV-l reverse transcriptase promoted by a novel nickel-chelating lipid. J Struct Biol 113, 117–123PubMedCrossRefGoogle Scholar
  19. 19.
    Scopes, R (1987) Protein Purification Principles and Practice Springer-Verlag, New York.Google Scholar
  20. 20.
    Mann, M. and Wilm, M. (1995) Electrospray mass spectrometry for protein characterization. Trends Biochem Sei 20, 219–224CrossRefGoogle Scholar
  21. 21.
    Grisshammer, R. and Nagai, K. (1994) Purification of over-produced proteins from E coli cells, in DNA Cloning 2 Expresson Systems A Practical Approach (Glover, D M. and Hanes, B D., eds.), IRL, Oxford, UK.Google Scholar
  22. 22.
    Lapthorn, A J, Harris, D. C, Littlejohn, A., Lustbader, J W, Canfield, R. E, Machin, K. J., Morgan, F. J and Isaacs, N W (1994) Crystal structure of human chornionic gonadotropin Nature 369, 455–461PubMedCrossRefGoogle Scholar
  23. 23.
    Bentley, G. A, Boulot, G, Karjalamen, K, and Mariuzza, R A (1995) Crystal structure of the β chain of a T-cell antigen receptor Science 267, 1985–1987CrossRefGoogle Scholar
  24. 24.
    Manjunath, P and Sairam, M. R (1982)J Blol Chem 257, 7109–7115Google Scholar
  25. 25.
    Pieles, U, Zurcher, W., Schar, M, and Moser, H E (1993) Matrix-assistedlaserdesorption-ionization time-of-flight mass spectrometry. a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides Nucleic Acids Res 21, 3191–3196.PubMedCrossRefGoogle Scholar
  26. 26.
    Brooksbank, R (1994) PhD thesis Umversity of CambridgeGoogle Scholar
  27. 27.
    Everett, R. D., Barlow, P., Milner, A, Luisi, B., Orr, A, Hope, G, and Lyon, D (1993) A novel arrangement of zinc-binding residues and secondary structure in the C3HC4 motif of an alpha herpes virus protein family. J MOl Biol 234, 1038–1047PubMedCrossRefGoogle Scholar
  28. 28.
    Braig, K, Otwinoski, Z, Hegde, R., Boisvert, D C, Joachimiak, A, Horwich, A L, and Sigler, P B (1994) The crystal structure of the bacterial chaperonin GroEL at 2 8 Å resolution. Nature 371, 578PubMedCrossRefGoogle Scholar
  29. 29.
    Oubridge, C, Ito, N., Evans, P R, Teo, C.-H, and Nagai, K. (1994) Crystal structure at 1 92 A resolution of the RNA-binding domain of the UlA spliceosomal protein complexed with an RNA hairpin Nature 372, 432–438PubMedCrossRefGoogle Scholar
  30. 30.
    Jacobo-Molina, A, Ding, J., Nanni, R G., Clark, A D, Lu, X, Tantillo, C., Williams, R. L., Kame, G., Ferris, A. L., Clark, P., Hizi, A, Hughes, S H, and Arnold, E (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double stranded DNA at 3.0 Å resolution shows bent DNA Proc. Natl Acad Sci USA 90, 6320PubMedCrossRefGoogle Scholar
  31. 31.
    Rini, J M, Stanfield, R. L, Stura, E A, Salinas, P A., Profy, A T, and Wilson, I A (1993) Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50 1, in complex with its V3 loop peptide antigen Proc Natl Acad Sci USA 90, 6325–6329PubMedCrossRefGoogle Scholar
  32. 32.
    Prongay, A. J., Smith, T J, Rossman, M G, Ehrlich, L S, Carter, C A, and McClure, J. (1990) Preparation and crystallization of a human immunodeficiency virus p24-Fab complex Proc Natl Acad Sci USA 87, 9980–9984PubMedCrossRefGoogle Scholar
  33. 33.
    Tormo, J, Fita, I., Kanzler, O., and Blaas, D. (1990) Crystallization and preliminary X-ray diffraction studies of the Fab fragment of a neutralizing monoclonal antibody directed against human rhinovirus serotype 2. J Biol. Chem. 265, 16,799–16,800.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • Ben Luisi
    • 1
    • 2
  • Marie Anderson
    • 1
  • Graham Hope
    • 1
  1. 1.MRC Virology UnitInstitute of VirologyGlasgowScotland, UK
  2. 2.Department of BiochemistryUniversity of CambridgeUK

Personalised recommendations