Skip to main content

Charged Derivatives for Peptide Sequencing Using a Magnetic Sector Instrument

  • Protocol
Protein and Peptide Analysis by Mass Spectrometry

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 61))

  • 920 Accesses

Abstract

Peptides are sequenced using a magnetic sector tandem mass spectrometer by analyzing the product ions resulting from high-energy collisions between the peptide precursor ion and an inert gas (1). These collisions result in product ion spectra with features specific to high-energy collision-induced dissociation (CID). Ideally, the product ion pattern will be sufficient to sequence the peptide analyte. For some peptides, however, the fragmentation pattern will not be amenable to complete interpretation, and further measures must be taken to improve the results. One such measure that has been found to improve the interpretability of CID spectra is derivatization of the N-terminus of the peptide with a fixed-charge bearing group (24). Section 1.1. summarizes the salient features of the high-energy CID spectra of peptides and describes the rationale behind the best use of N-terminal charged derivatives. Several examples are shown in which charged derivatives improve the interpretability of CID spectra. Section 1.2. discusses synthetic schemes for attaching a charged group to a peptide N-terminus, and Sections 2. and 3. describe the synthesis of trimethylammoniumacetyl (TMAA)-peptide derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sato, K., Asada, R., Ishihara, M., Kunihiro, F., Kammei, Y., Kubota, E., et al. (1987) High-performance tandem mass spectrometry: calibration and performance of linked scans of a four-sector instrument. Anal. Chem. 59, 1652–1659.

    Article  PubMed  CAS  Google Scholar 

  2. Kidwell, D. A., Ross, M. A., and Colton, R. J. (1984) Sequencing of peptides by secondary ion mass spectrometry. J. Am. Chem. Soc. 106, 2219,2220.

    Article  CAS  Google Scholar 

  3. Johnson, R. S., Martin, S. A., and Biemann, K. (1988) Collision-induced fragmentation of (M + H)+ ions of peptides. Side chain specific sequence ions. Int. J. Mass Spectrom. Ion Processes 86, 137–154.

    Article  CAS  Google Scholar 

  4. Vath, J. E. and Biemann, K. (1990) Microderivatization of peptides by placing a fixed positive charge at the N-terminus to modify high energy collision fragmentation. Int. J. Mass Spectrom. Ion Processes 100, 287–299.

    Article  CAS  Google Scholar 

  5. Yu, W. and Martin, S. A. (1994) Enhancement of ion transmission at low collision energies via modifications to the interface region of a four-sector tandem mass spectrometer. J. Am. Soc. Mass Spectrom. 5, 460–469.

    Article  CAS  Google Scholar 

  6. Cheng, X., Wu, Z., Fenselau, C., Ishihara, M., and Musselman, B. D. (1995) Interface for a four sector mass spectrometer with a dual-purpose collision cell: high transmission at low to intermediate energies. J. Am. Soc. Mass Spectrom 6, 175–186.

    Article  CAS  Google Scholar 

  7. Yost, R. A. and Enke, C. G. (1978) Selected ion fragmentation with a tandem quadrupole mass spectrometer. J. Am. Chem. Soc. 100, 2274,2275.

    Article  CAS  Google Scholar 

  8. Hunt, D. F., Yates, J. R., Shabanowitz, J., Winston, S., and Hauer, C. R. (1986) Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 83, 6233–6237.

    Article  PubMed  CAS  Google Scholar 

  9. Schoen, A. E., Amy, J. W., Ciupek, J. D., Cooks, R. G., Dobberstein, P., and Jung, G. (1985) A hybrid BEQQ mass spectrometer. Int. J. Mass Spectrom. Ion Processes 65, 124–140.

    Article  Google Scholar 

  10. Bean, M. F., Carr, S. A., Thorne, G. C., Reilly, M. H., and Gaskell, S. J. (1991) Tandem mass spectrometry of peptides using hybrid and four-sector instruments: a comparative study. Anal. Chem. 63, 1473–1481.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson, R. S., Martin, S. A., Biemann, K., Stults, J. T., and Watson, J. T. (1987) Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal. Chem. 59, 2621.

    Article  PubMed  CAS  Google Scholar 

  12. Biemann, K. (1990) Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods Enzymol. 193, 455.

    Article  PubMed  CAS  Google Scholar 

  13. Biemann, K. (1988) Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom. 16, 99–111. (This reference is a modification of that proposed by Roepstorff, P. and Fohlman, J. [19841] Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11, 601.)

    Article  PubMed  CAS  Google Scholar 

  14. Mann, M. and Wilm, M. (1994) Error tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399.

    Article  PubMed  CAS  Google Scholar 

  15. Wu, Z. and Fensleau, C. (1992) Proton affinity of arginine measured by the kinetic approach. Rapid Commun. Mass Spectrom. 6, 403–405.

    Article  CAS  Google Scholar 

  16. Tomer, K. B., Crow, F. W., and Gross, M. L. (1983) Location of double bond position in unsaturated fatty acids by negative ion MS/MS. J. Am. Chem. Soc. 105, 5487,5488.

    Article  CAS  Google Scholar 

  17. Biemann, K. and Scoble, H. A. (1987) Characterization by tandem mass spectrometry. Science 231, 992–998.

    Article  Google Scholar 

  18. Gibson, B. W. and Cohen, P. (1990) Liquid secondary ion mass spectrometry of phosphorylated and sulfated peptides and proteins. Methods Enzymol. 193, 480–501.

    Article  PubMed  CAS  Google Scholar 

  19. Papac, D. I., Thornburg, K. R., Bullesbach, E. E., Crouch, R. K., and Knapp, D. R. (1992) Palmitylation of a G-protein coupled receptor. J. Biol. Chem. 267, 16,889–16,894.

    PubMed  CAS  Google Scholar 

  20. Hutchins, D. A., Skipper, P. L., Naylor, S., and Tannenbaum, S. R. (1988) Isolation and characterization of the major fluoranthene-hemoglobin adducts formed in vivo in the rat. Cancer Res. 48, 4756–4761.

    PubMed  CAS  Google Scholar 

  21. Day, B. W., Skipper, P. L., Zaia, J., and Tannenbaum, S. R. (1991) Enantio-specificity of covalent adduct formation by benzo[a]pyrene anti-diol epoxide with human serum albumin. J. Am. Chem. Soc. 113, 8505–8509.

    Article  CAS  Google Scholar 

  22. Zaia, J. and Biemann, K. (1994) Characteristics of high energy collision-induced dissociation tandem mass spectra of polycyclic aromatic hydrocarbon diolepoxide adducted peptides. J. Am. Soc. Mass Spectrom 5, 649–654.

    Article  CAS  Google Scholar 

  23. Yu, X., Wu, Z., and Fenselau, C. (1995) Covalent sequestration of melphalan by metallothionein and selective alkylation of cysteines. Biochemistry 34, 3377–3385.

    Article  PubMed  CAS  Google Scholar 

  24. Jiang, L. and Fenselau, C. (1994) Identification of Metallothionein and Anticancer Drug Interaction Sites by Mass Spectrometry. Proceedings of the 42nd ASMS Conference on Mass Spectrometry Allied TOPICS, p 65.

    Google Scholar 

  25. Wetzel, R., Halualani, R., Stults, J. T., and Quan, C. (1990) A general method for highly selective cross-linking of unprotected polypeptides via pH-controlled modifications of N-terminal α-amino groups. Bioconjugate Chem. 2, 114–122.

    Article  Google Scholar 

  26. Vath, J. E., Zollinger, M., and Biemann, K. (1988) Method for the derivatization of organic compounds at the sub-nanomole level with reagent vapor. Fresnius Z Anal. Chem. 331, 248–252.

    Article  CAS  Google Scholar 

  27. Stults, J. T., Lai, J., McCune, S., and Wetzel, R. (1993) Simplification of high-energy collision spectra of peptides by amino-terminal derivatization. Anal. Chem. 65, 1703–1708.

    Article  PubMed  CAS  Google Scholar 

  28. Zaia, J. and Biemann, K. (1995) Comparison of charged derivatives for high energy collision-induced dissociation tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 6, 428–436.

    Article  CAS  Google Scholar 

  29. Wagner, D. S., Salari, A., Gage, D. A., Leykam, J., Fetter, J., Hollingsworth, R., and Watson, J. T. (1991) Derivatization of peptides to enhance ionization efficiency and control fragmentation during analysis by fast atom bombardment tandem mass spectrometry Biol. Mass Spectrom. 20, 419–425.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zaia, J. (1996). Charged Derivatives for Peptide Sequencing Using a Magnetic Sector Instrument. In: Chapman, J.R. (eds) Protein and Peptide Analysis by Mass Spectrometry. Methods in Molecular Biology™, vol 61. Humana Press. https://doi.org/10.1385/0-89603-345-7:29

Download citation

  • DOI: https://doi.org/10.1385/0-89603-345-7:29

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-345-0

  • Online ISBN: 978-1-59259-547-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics