Cystic Fibrosis Airway Epithelial Cell Culture

  • Manuel A. Lega
Protocol
Part of the Methods in Molecular Medicine book series (MIMM, volume 2)

Abstract

Cystic fibrosis (CF) is the most frequent (incidence around l/2500 live births) genetic cause of death among Caucasians. It is an autosomal recessive disorder compromising the secretory epithelia. Clinically, CF is a polymorphic disease showing abnormal functioning of the airways, the digestive apparatus (pancreas and intestine), the reproductive tract, and the sweat glands, leading to respiratory insufficiency, mainutrition, male sterility, and production of salty sweat. The average life-span of CF patients falls around 25–30 yr of age in the United States and Europe, and around 10 yr of age in Latin America (1, 2). Respiratory infections are the cause of death of more than 90% of CF patients. No curative treatments are as yet available for CF.

Keywords

Toxicity Sucrose Europe EDTA DMSO 

References

  1. 1.
    Boat, T. F., Welsh, M. J., and Beaudet, A. L. (1989) Cystic fibrosis, in The Metabolic Basis of Inherited Disease, vol 6 (Scrivier, C. L., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp 2649–2680Google Scholar
  2. 2.
    McKustck, V. A. (1990) Cystic fibrosts, in Mendelian inheritance in Man Catalogs of Autosoma Dominant, Autosomal Recessive and X-linked Phenotypes John Hopkins University Press, Baltimore, MD, pp 1120–1126Google Scholar
  3. 3.
    Quinton, P. M. (1983) Chloride impermeabihty in cystic fibrosis Nature 301, 421,422PubMedCrossRefGoogle Scholar
  4. 4.
    Kerem, B. S., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., et al (1989) Identification of the cystic fibrosis gene genetic analysis Science 245, 1073–1080PubMedCrossRefGoogle Scholar
  5. 5.
    Riordan, J. K., Rommens, J M, Kerem, B S, Alon, N, Rozmahel, R, Grzelczak Z, et al (1989) Identitication of the cystic fibrosis gene cloning and characterization of complementary DNA Science 245, 1066–1073PubMedCrossRefGoogle Scholar
  6. 6.
    Rommens, J. M., Jannuzzi, M. C., Kerem, B. S., Drumm, M. L., Melmer, G., Dean, M., et al (1989) Identification of the cystic fibrosis gene chromosome walking and jumping Science 245, 1059–1065PubMedCrossRefGoogle Scholar
  7. 7.
    Romeo, G. and Devoto, M. (eds.) (1990) Population analysis of the major mutation in cystic fibrosis Hum Genet 85, 391–445Google Scholar
  8. 8.
    Cystzc Fzbroszs mutatzon data Privileged commumcatton prepared for members of the CF Genettc Analysis Consortium, April 1995Google Scholar
  9. 9.
    Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, G. A., O’Riordan, C. R., and Smith, A. E. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis Cell 63, 827–834PubMedCrossRefGoogle Scholar
  10. 10.
    Crawford, I., Maloney, P. C., Zeitlin, P. L., Guggio, W. B., Hyde, S. C., Turley, H., Gatter, K. C., Harris, A., and Higgins, C. F. (1991) Immunocytochemical localization of the cystic fibrosis gene product CFTR Proc. Natl. Acad. Sci. USA 88, 9262–9266PubMedCrossRefGoogle Scholar
  11. 11.
    Denning, G. M., Ostedgaard, L. S., Cheng, S. H., Smith, A. E., and Welsh, M. J. (1992) Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia J. Clin. Invest 89, 339–349PubMedCrossRefGoogle Scholar
  12. 12.
    Englehardt, J. F., Yankaskas, J. R., Ernst, S. A., Yang, Y., Marmo, C. R., Boucher, R. C., Cohn, J. A., and Wilson, J. M. (1992) Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nature Genet. 2, 240–248CrossRefGoogle Scholar
  13. 13.
    Trapnell, B. C., Chu, C. S., Paakko, P. K., Banks, T. C., Yoshimura, K., Ferrans, V. J., Cherinck, M. S., and Crystal, R. G. (1991) Expression of the cystic fibrosis transmembrane conductance regulator in the respiratory tract of normal individuals and individuals with cystic fibrosis Proc. Natl. Acad. Sci. USA 88, 6565–6569PubMedCrossRefGoogle Scholar
  14. 14.
    Jeffery, P. K. (1983) Morphologic features of airway surface epithelial cells and glands Am. Rev. Respir. Dis. Suppl. Compar. Bio. Lung 128, S14–S19Google Scholar
  15. 15.
    Breeze, R. G. and Wheeldon, E. B. (1977) The cells of the pulmonary airways Am Rev Respir Dis 116, 705–777PubMedGoogle Scholar
  16. 16.
    Crystal, R. (1992) Protocol for Gene Therapy of the Respiratory Manzfeytations of Cystcc Fibrosis Using a Replication Deficient. Recombinant Adenovirus to Transfer the Normal Human CFTR cDNA to the Airwuy Epithelium Recombinant DNA Advisory Committee (USA)Google Scholar
  17. 17.
    Vega, M. A., Goossens, M., and Besmond, C. (1994) A powerful method for in vitro selection of normal versus cystic fibrosis airway epithelial cells Gene. Ther. 1, 59–63PubMedGoogle Scholar
  18. 18.
    Welsh, M. J. and Smith, A. E. (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis Cell 73, 1251–1254PubMedCrossRefGoogle Scholar
  19. 19.
    Maarten, K. (1992) Chloride Transport in Normal and Cystic Fibrosis Epithelial Cells Thesis, Erasmus Umverslty, Rotterdam, 78–96Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1996

Authors and Affiliations

  • Manuel A. Lega
    • 1
  1. 1.Department of Biology, Human Gene Therapy Working GroupUniversidad Nacional del SurBahia BlancaArgentina

Personalised recommendations