Live Viral Vectors

Construction of a Replication-Deficient Recombinant Adenovirus
  • Alan Warnes
  • Anthony R. Fooks
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 4)


Since the use of molecular biology and genetic engineering techniques has become widespread, a new generation of candidate vaccines has been developed, including live viral vectors (1, 2). The basis of using recombinant viruses as potential vaccines involves the incorporation of specific genes from a pathogenic organism into the genome of a nonpathogenic or attenuated virus. The recombinant virus can then infect specific eukaryotic cells either in vivo or in vitro, and cause them to express the recombinant protein. In our laboratory, successful results have been obtained using replication-deficient recombinant adenoviruses as immunizing agents for tick-borne encephalitis virus NSl protein (3) and measles virus nucleoprotein (4), both of which elicit a protective immune response.


Recombinant Virus Recombinant Adenovirus Transfer Vector Permissive Cell Transient Expression Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mackett, M, Smith, G. L., and Moss, B. (1982) Vaccinia virus a selectable eukaryotic cloning and expression vector. Proc. Natl. Acad. Sci, USA 79, 7415–7419PubMedCrossRefGoogle Scholar
  2. 2.
    Robinson, A. J., Nicholson, B. H., and Lyttle, D. J. (1994) Engmeered viruses and vaccines, in Synthetic Vaccines (Nicholson, B., ed), pp. 331–375.Google Scholar
  3. 3.
    Jacobs, S. C., Stephenson, J. R., and Wilkinson, G. W. G. (1992) High level expression of the tick-borne encephahtis virus NSI protein by using an adenovirus-based vector: protection elicited in a murine model. J. Virol. 66, 2086–2095PubMedGoogle Scholar
  4. 4.
    Fooks, A R., Schadeck, E., Liebert, U. G., Dowsett B. A., Rima, B. K., Steward, M., Stephenson, J. R., and Wilkinson, G. W. G. (1995) High-level expression of the measles virus nucleocapsid protein by using a replication-deficient adenovirus vector: induction of an MHC-l-restricted CTL response and protection in a murine model. Virology 210, 456–465.PubMedCrossRefGoogle Scholar
  5. 5.
    Moss, B. (1991) Vaccima virus: a tool for research and vaccine development. Science 252, 1662–1667.PubMedCrossRefGoogle Scholar
  6. 6.
    Sphener, D., Drillien, R., and Lecocq, J. P. (1990) Construction of fowlpox viral vectors with intergenic insertions: expression of the β-galactosidase gene and the measles virus fusion gene. .J. Viral. 64, 527–533.Google Scholar
  7. 7.
    Taylor, J., Weinberg, R., Tartaglia, J., Richardson, C., Alkhatib, G., Briedis, D, Appel, M., Norton, E., and Paoletti, E. (1992) Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins. Virology 187, 321–328.PubMedCrossRefGoogle Scholar
  8. 8.
    Perkus, M. E., Goebel, S. J., Davis, S. W., Johnson, G. P., Norton, E. K., and Paoletti, E. (1991) Deletion of 55 open reading frames from the termini of vaccima viras Virology 180, 406–410.PubMedCrossRefGoogle Scholar
  9. 9.
    zur Hausen, H. (1981) Molecular Biology of Tumor Viruses DNA Tumour Viruses, part 2 (Tooze, J., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 747–795.Google Scholar
  10. 10.
    van der Werf, S., Bradley, J., Wimmer, E., Studrer, W. F., and Dunn, J J. (1986) Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl. Acad. Sci USA 83, 2330–2334.PubMedCrossRefGoogle Scholar
  11. 11.
    Molla, A, Jang, S. K., Paul, A V., Reuer, Q., and Wimmer, E. (1992) Cardioviral internal ribosomal entry site is functional in a genetically engineered poliovirus. Nature 356, 255–257PubMedCrossRefGoogle Scholar
  12. 12.
    Flotte, T. R., Afione, S. A., Solow, R., Drumm, M. L., Markakis, D., Guggingo, W. B., Zeitlin, P. L, and Carter, B J. (1993) Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J Biochem 268, 3781–3790.Google Scholar
  13. 13.
    Lowenstein, P. R., Wilkinson, G. W. G., Castro, M. G., Shering, A. R., Fooks, A. R, and Barn, D. (1995) Non-neurotropic adenovirus: a vector for gene transfer to the brain and possible gene therapy of neurological disorders. Genetic Manlpulation of the Nervous System (Latchman, D. S., ed.), in press.Google Scholar
  14. 14.
    Graham, F. L. and Prevec, L. (1992) Adenovirus-based expression vectors and recombinant vaccines. Biotechnology 20, 363–390.PubMedGoogle Scholar
  15. 15.
    Top, F. H., Buescher, E. L., Bancroft, W. H, and Russell, P. K (1971) Immunization with live types 7 and 4 adenovirus vaccines. II. Antibody response and protective effect against acute respiratory disease due to adenovnus type 7 J Infect. Dis 124, 155–160.PubMedGoogle Scholar
  16. 16.
    Lubeck, M. D., Davis, A. R., Chengalvala, M., Natuk, R. J., March, J. E., Molnar-Kimber, K., et al. (1989) Immunogemcity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus. Proc Natl. Acad. Sci. USA 86, 6763–6767.PubMedCrossRefGoogle Scholar
  17. 17.
    Prevec, L, Schneider, M., Rosenthal, K. L., Belbeck, I. W., Derbyshire, J. and Graham, F. L. (1989) Use of human adenovirus-based vectors for antigen expression in animals. J. Gen. Viral. 70, 429–434CrossRefGoogle Scholar
  18. 18.
    Eloit, M., Gilardi-Hebenstreit, P., Tome, B., and Perricaudet, M. (1990) Construction of a defective adenovirus vector expressing the pseudorabies virus glycoprotem gp50 and its use as a live vaccme. J. Gen. Virol. 71, 2425–2431.PubMedCrossRefGoogle Scholar
  19. 19.
    Harrison, T., Graham, F., and Williams, J. (1977) Hostrange mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 77, 319–329.PubMedCrossRefGoogle Scholar
  20. 20.
    Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovnus type 5. J. Gen. Virol. 36, 59–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Fooks, A. R., Warnes, A, Rather, A., Dowsett, A. B., Rima, B. K., Wilkinson, G. W. G., and Stephenson, J. R. (1995) Preliminary studies with scaleable systems for the production of replication-deficient recombinant adenoviruses in mammalian cell lines, in Animal Cell Technology: Developments Towards the 21st Centuly (Beuvery, C. and Griffiths, J. eds), Kluwer Academic, in pressGoogle Scholar
  22. 22.
    Rather, A. J., Fooks, A. R, and Griftiths, J. B. (1995) Culture of 293 cells in different culture systems: cell growth and recombinant adenovirus production. Biotechnol Techn. 9, 169–174.CrossRefGoogle Scholar
  23. 23.
    Gallichan, W. S., Johnson, D. C., Graham, F. L., and Rosenthal, K. L. (1993) Mucosal immunity and protection after intranasal immunization with recombinant adenoviruses expressing herpes simplex virus glycoprotein B. J. Infect Dis, 168, 622–629.PubMedGoogle Scholar
  24. 24.
    Natuk, R. J., Lubeck, M. D., Davis, A. R., Chengalvala, M., Chandra, P. R., Mizutani, S., Eichberg, J. W., and Hung, P. P. (1992) Adenoviruses as a system for induction of secretory immunity. Vaccine Res. 1, 275–280Google Scholar
  25. 25.
    Ghosh-Choudhury, G., Haj-Ahmad, Y., Brinkley, P., Rudy, I., and Graham, F. L. (1986) Human adenovirus cloning vectors based on infectious bacterial plasmids Gene 50, 161–171.PubMedCrossRefGoogle Scholar
  26. 26.
    Graham, F. L. and Prevec, L. (1991) Manipulation of adenovirus vectors, in Methods in Molecular Biology, vol. 7 Gene Transfer and Expression Protocols (Murray, E. J., ed.), Humana, Clifton, NJ.Google Scholar
  27. 27.
    Wilkmson, G. W. G. and Akrigg, A. (1991) The cytomegalovirus virus major immediate early promoter and its use in eukaryotic expression systems Adv Gene Technol. 2, 287–310.Google Scholar
  28. 28.
    Graham, F. L., and Van der Eb, A. J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA Virology 52, 456–467.PubMedCrossRefGoogle Scholar
  29. 29.
    Wilkinson, G. W. G, and Akrigg, A. (1992) Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Res. 20, 2233–2239.PubMedCrossRefGoogle Scholar
  30. 30.
    Warnes, A., Fooks, A. R., and Stephenson, J. R. (1994) Production of measles nucleoprotein in different expression sysltems and its use as a diagnostic reagent. J Virol. Meth. 49, 257–268.CrossRefGoogle Scholar
  31. 31.
    McGrory, W. J., Bautista, D. S, and Graham, F. L (1988) A simple technique for the rescue of early region 1 mutants into infectious adenovirus type 5. Virology 163, 614–617.PubMedCrossRefGoogle Scholar
  32. 32.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning. A Laboratoly Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  33. 33.
    Finney, D. J. (1971) Statistical Method in Biological Assay, 2nd ed. Griffm, London.Google Scholar
  34. 34.
    Akrigg, A., Wilkinson, G. W. G., and Oram, J. D. (1985) The structure of the major immediately early gene of human cytomegalovirus. Virus Res. 2, 107–121.PubMedCrossRefGoogle Scholar
  35. 35.
    Spessot, R., Inchley, K., Hupel, T. M., and Bacchetti, S. (1989) Cloning of herpes simplex virus ICP4 gene in an adenovirus vector. Virology 168, 378–387.PubMedCrossRefGoogle Scholar
  36. 36.
    Wilkinson, G. W. G. and Borysiewicz, L. K. (1995) Gene therapy and viral vaccination: the interface Br. Med. Bull 51, 205–216.PubMedGoogle Scholar
  37. 37.
    Grubb, B. R., Pickles, R. J., Ye, H., Yankaskas, J. R., Vick, R. N., Engelhardt, J. F., Wilson, J. M, Johnson, L. G., and Boucher, R. C. (1994) Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epitheha of mice and humans. Nature 371, 802–806.PubMedCrossRefGoogle Scholar
  38. 38.
    Rosenfeld, M. A., Chu, S., Seth, P., Danel, C., Banks, T., Yoneyama, K., Yoshimura, K., and Crystal, R. G. (1994) Gene transfer to freshly isolated human respiratory epithehal cells in vitro using a replication-deficient adenovirus containing the human cystic fibrosis transmembrane conductance regulator cDNA. Hum. Gene. Ther. 5 331–342.PubMedCrossRefGoogle Scholar
  39. 39.
    Hsu, K. H., Lubeck, M. D., Bhat, B. M., Bhat, R. A., Kostek, Selling, B. H, Mizutani, S., Davis, A. R., and Hung, P. P. (1994) Efficacy of adenovnus-vectored respiratory syncytial virus vaccines in a new ferret model. Vaccine 12, 607–612PubMedCrossRefGoogle Scholar
  40. 40.
    Ganne, V., Eloit, M., Laval, A., Adama, M., and Trouve, G. (1994) Enhancement of the efficacy of a replication-defective adenovnus vectored vaccine by the addltion of oil adjuvants. Vaccine 12, 1190–1196.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc, Totowa, NJ 1996

Authors and Affiliations

  • Alan Warnes
    • 1
  • Anthony R. Fooks
    • 1
  1. 1.Centre for Applied Microbiology and ResearchPorton DownUK

Personalised recommendations