Stimulation of Mucosal Immunity

  • David J. M. Lewis
  • Christopher M. M. Hayward
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 4)


The mucosal immune system is composed of distinct regional immune tissue (e.g., “GALT,” gut-associated lymphoid tissue; “BALT,” bronchus-associated lymphoid tissue; reproductive tract and breast tissue, and so forth) interconnected by trafficking of primed lymphocytes as a common “mucosa-associated lymphoid tissue,” “MALT” (1). In addition, immune responses within MALT may occur independently of systemic immunity, with distinctive regulatory mechanisms and the induction of dimeric secretory IgA (SIgA) at the mucosal surface. As a result traditional methods for inducing systemic immunity may not induce significant SIgA, and techniques have been developed to deliver antigen directly to a mucosal surface in such a way as to induce immunity rather than immunological tolerance. The trafficking of primed B- and T-cells between mucosal sites, probably regulated by specific adhesion molecules, such as α4β7 integrin on lymphocytes and MAdCAM- on mucosal blood vessels (2), leads to dissemination of the mucosal immune response. One benefit of this, therefore, is that immunization of an accessible mucosal surface may induce an immune response at less accessible mucosal sites (such as the genital tract). Furthermore, by characterizing mucosa homing lymphocytes trafficking in the blood, it may be possible to indirectly study mucosal responses.


ELISPOT Assay Mucosal Immune Response Oral Immunization Cholera Vaccine Mucosal Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Czerkmsky, C. and Holmgren, J. (1994) Exploration of mucosal immumty in humans: relevance to vaccine development. Cell. Mol. Biol. 1, 37–44.Google Scholar
  2. 2.
    Quiding, J. M., Lakew, M., Nordstrom, I., Banchereau, J, Butcher, E., Holmgren, J, and Czerkinsky, C. (1995) Human circulating specific antibody-forming cells after systemic and mucosal immunizations: differential homing commitments and cell surface differentiation markers Eur. J. Immunol. 25 322–327CrossRefGoogle Scholar
  3. 3.
    Holmgren, J., Svennerholm, A. M., Jertborn, M., Clemens, J., Sack, D. A., Salenstedt, R., and Wigzell, H. (1992) An oral B subumt: whole cell vaccine aganist cholera. Vaccine 10, 911–914.PubMedCrossRefGoogle Scholar
  4. 4.
    Lewis, D. J., Novotny, P., Dougan, G., and Griffin, G. E. (1991) The early cellular and humoral immune response to primary and booster oral immunization with cholera toxin B subunit. Eur. J. Immunol. 21, 2087–2094PubMedCrossRefGoogle Scholar
  5. 5.
    Lewis, D. J., Gilks, C. F., Ojoo, S., Castello, B. L., Dougan, G., Evans, M. R., McDermott, S., and Griffin, G. E. (1994) Immune response following oral administration of cholera toxm B subunit to HIV-l-infected UK and Kenyan subjects. AIDS 8, 779–785.PubMedCrossRefGoogle Scholar
  6. 6.
    Eriksson, K., Kilander, A., Hagberg, L., Norkrans, G., Holmgren, J., and Czerkmsky, C. (1993) Intestinal antibody responses to oral vaccination in HIV-Infected individuals AIDS 7, 1087–1091.PubMedCrossRefGoogle Scholar
  7. 7.
    Holmgren, J., Lycke, N., and Czerkinsky, C. (1993) Cholera toxin and cholera subunit as oral-mucosal adjuvant and antigen vector systems Vaccine 11, 1179–1184.PubMedCrossRefGoogle Scholar
  8. 8.
    Roberts, M., Bacon, A., Rappuoh, R, Pizza, M., Cropley, I., Deuce, G., Dougan, G., Marinaro, M., McGhee, J., and Chatfield, S. (1995) A mutant pertussis toxm molecule that lacks ADP-ribosyltransferase activity, PT-9W129G, is an effective mucosal adjuvant for intranasally delivered proteins. Infect. Immun. 63, 2100–2108.PubMedGoogle Scholar
  9. 9.
    Deuce, G., Turcotte, C., Cropley, I., Roberts, M., Pizza, M., Domenghmi, M., Rappuoli, R., and Dougan, G. (1995) Mutants of Escherzchza coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc. Natl Acad. Sci. USA 92, 1644–1648.CrossRefGoogle Scholar
  10. 10.
    Bergquist, C., Lagergard, T., Lindblad, M., and Holmgren, J. (1995) Local and systemic antibody responses to dextran-cholera toxin B subunit conjugates. Infect. Immun. 63, 2021–2025.PubMedGoogle Scholar
  11. 11.
    O’Hagan, D. T., McGee, J. P., Holmgren, J., Mowat, A. M., Donachie, A. M, Mills, K H, Gaisford, W., Rahman, D., and Challacombe, S J (1993) Biodegradable microparticles for oral immunization. Vaccine 11, 149–154.PubMedCrossRefGoogle Scholar
  12. 12.
    Chatfield, S., Roberts, M., Li, J., Stains, A., and Dougan, G. (1994) The use of live attenuated Salmonella for oral vaccination. Dev Biol. Standard. 82, 35–42.Google Scholar
  13. 13.
    Lelmer, T., Tao, L., Panagiotidi, C., Klavmskis, L. S., Brookes, R., Hussam, L., Meyers, N., Adams, S. E., Gearing, A. J., and Bergmeier, L. A. (1994) Mucosal model of genital immunization in male rhesus macaques with a recombiant simian immunodeficiency virus p27 antigen. J. Virol. 68, 1624–1632.Google Scholar
  14. 14.
    Quiding, J. M., Granstrom, G., Nordstrom, I., Holmgren, J., and Czerkmsky, C. (1995) Induction of compartmentalized B-cell responses in human tonsils. Infect. Immun 63, 853–857.Google Scholar
  15. 15.
    Cripps, A. W., Dunkley, M. L., and Clancy, R. L. (1994) Mucosal and systemic immunizations with killed Pseudomonas aeruginosa protect against acute respiratory infection in rats. Infect. Immun 62, 1427–1436PubMedGoogle Scholar
  16. 16.
    Lehner, T., Bergmeier, L. A., Tao, L., Panagiotidt, C., Klavinskis, L. S., Hussam, L, Ward, R. G., Meyers, N., Adams, S. E., Gearing, A. J., et al. (1994) Targeted lymph node immunization with simian immunodeficiency virus p27 antigen to elicit genital, rectal, and urinary immune responses in nonhuman primates. J. Immunol 153, 1858–1868.PubMedGoogle Scholar
  17. 17.
    Lue, C., van den Wall Bake, A. W., Prince, S. J., Juhan, B. A., Tseng, M. L, Radl, J., Elson, C. O., and Mestecky, J. (1994) Intrapentoneal immunization of human subjects with tetanus toxoid induces specific antibody-secreting cells in the peritoneal cavity and in the circulation, but fails to elicit a secretory IgA response. Clin. Exp. Immunol. 96, 356–363.PubMedCrossRefGoogle Scholar
  18. 18.
    Castello-Branco, L. R. R., Griffin, G. E., Poulton, T. A., Dougan, G., and Lewis, D. J. M. (1994) Characterisation of the circulating T cell response after oral lmmunisation of human volunteers with cholera toxin B subunit. Vaccine 12, 65–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Castello-Branco, L. R. R., Griffin, G. E., Dougan, G., and Lewis, D. J. M. (1995) A method to screen T lymphocyte epitopes after oral immumsation of humans: application to cholera toxm B subunit. Vaccine 13, 817–820.PubMedCrossRefGoogle Scholar
  20. 20.
    Lagoo, A. S., Eldridge, J. H., Lagoo, D. S., Black, A., Ridwan, B. U., Hardy, K. J., McGhee, J. R., and Beagley, K. W. (1994) Peyer’s patch CD8+ memory T cells secrete T helper type 1 and type 2 cytokines and provide help for immunoglobuhn secretion. Eur J, Immunol. 24, 3087–3092.CrossRefGoogle Scholar
  21. 21.
    Hiroi, T., Fujihashi, K., McGhee, J. R., and Kiyono, H. (1994) Characterization of cytokme-producing cells in mucosal effector sites: CD3+ T cells of Thl and Th2 type in salivary gland-associated tissues. Eur. J. Immunol. 24, 2653–2658.PubMedCrossRefGoogle Scholar
  22. 22.
    Marcello, A., Loregian, A., Palu, G., and Hirst, T. R. (1994) Efficient extracellular production of hybrid Escherichia colz heat-labile enterotoxin B subunits in a marine vibrio. Ferns Microblol. Lett. 117, 47–51CrossRefGoogle Scholar
  23. 23.
    Hashar, T. H. and Hurst, T. R. (1995) Immunoregulatory role of H-2 and intra-H-2 alleles on antibody responses to recombinant preparations of B-subunits of Escherichia colz heat labile enterotoxin (rEtxB) and cholera toxin (rCtxB). Vaccine 13, 803–810.CrossRefGoogle Scholar
  24. 24.
    Schaefer, M. E., Rhodes, M., Prince, S J., Michalek, S. M., and McGhee, J. R. (1977) A plastic intraoral device for the collection of human parotid saliva. J. Dent. Res. 56, 728–733.CrossRefGoogle Scholar
  25. 25.
    Gaspari, M. M., Brennan, P T., Solomon, S. M., and Elson, O. (1988) A method of obtaining, processing, and analyzing human intestinal secretions for antibody content. J. Immunol. Methods 110, 85–91.PubMedCrossRefGoogle Scholar
  26. 26.
    de Vos, T. and Dick, T A. (1991) A rapid method to determine the isotype and specificity of coproantibodies in mice infected with Trichinella or fed cholera toxin J. Immunol. Methods 141, 285–288.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc, Totowa, NJ 1996

Authors and Affiliations

  • David J. M. Lewis
    • 1
  • Christopher M. M. Hayward
    • 1
  1. 1.Division of Infectious DiseasesSt. George’s Hospital Medical SchoolLondonUK

Personalised recommendations