Skip to main content

Targeted Mutagenesis Mediated by the Triple Helix Formation

  • Protocol
In Vitro Mutagenesis Protocols

Part of the book series: Methods In Molecular Medicine™ ((MIMB,volume 57))

  • 2212 Accesses

Abstract

Oligonucleotides can bind in the major groove of duplex DNA and form triple helices in a sequence-specific manner 14). Progress in elucidating the third strand binding code has raised the possibility of developing nucleic acids as sequence-specific reagents for research and possibly clinical applications. Oligonucleotide-mediated triplex formation has been shown to prevent transcription factor binding to promoter sites and to block mRNA synthesis in vitro and in vivo (58). Instead of using triplex formation to transiently block gene expression, however, we reasoned that it would be advantageous to use triple helix formation to target mutations to specific sites in selected genes in order to produce permanent, heritable changes in gene function and expression (911). In this approach, mutations are targeted to a selected site by linking the triplex-forming oligonucleotide to a mutagen so that the sequence specificity of the triplex formation can be imparted to the action of the mutagen (Fig. 1).

Strategy for triple helix-targeted mutagenesis. The 10-base triple helix-forming oligonucleotide is shown positioned above its target site in the supF gene (bp 167–176). The oligonucleotide is conjugated to a mutagen, 4′-hydroxymethyl-4,5′,8-trimethylpsoralen, which is targeted to intercalate between basepairs 166 and 167, as indicated by the arrow. Photoactivation of the psoralen generates adducts and thereby mutations at the targeted site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beal, P. A. and Dervan, P. B. (1991) Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251, 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  2. Beal, P. A. and Dervan, P. B. (1992) The influence of single base triplet changes on the stability of a Pur-Pur-Pyr triple helix determined by affinity cleaving. Nucleic Acids Res. 20, 2773–2776.

    Article  PubMed  CAS  Google Scholar 

  3. Duval-Valentin, G., Thuong, N. T., and Helene, C. (1992) Specific inhibition of transcription by triple helix-forming oligonucleotides. Proc. Natl. Acad. Sci. USA 89, 504–508.

    Article  PubMed  CAS  Google Scholar 

  4. Fossella, J. A., Kim, Y. J., Shih, H., Richards, E. G., and Fresco, J. R. (1993) Relative specificities in binding of Watson-Crick basepairs by third strand residues in a DNA pyrimidine triplex motif. Nucleic Acids Res. 21, 4511–4515.

    Article  PubMed  CAS  Google Scholar 

  5. Cooney, M., Czernuszewicz, G., Postel, E. H., Flint, S. J., and Hogan, M. E. (1988) Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science 241, 456–459.

    Article  PubMed  CAS  Google Scholar 

  6. Giovannangeli, C., Rougee, M., Garestier, T., Thuong, N. T., and Helene, C. (1992) Triple-helix formation by oligonucleotides containing the three bases thymine, cytosine, and guanine. Proc. Natl. Acad. Sci. USA 89, 8631–8635.

    Article  PubMed  CAS  Google Scholar 

  7. Grigoriev, M., Praeuth, D., Guieysse, A. L., Robin, P., Thuong, N. T., Helene, C., and Harel-Bellan, A. (1993) Inhibition of gene expression by triple helix-directed DNA crosslinking at specific sites. Proc. Natl. Acad. Sci. USA 90, 3501–3505.

    Article  PubMed  CAS  Google Scholar 

  8. Postel, E. H., Flint, S. J., Kessler, D. J., and Hogan, M. E. (1991) Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc. Natl. Acad. Sci. USA 88, 8227–8231.

    Article  PubMed  CAS  Google Scholar 

  9. Gasparro, F. P., Havre, P. A., Olack, G. A., Gunther, E. J., and Glazer, P. M. (1994) Site-specific targeting of psoralen photoadducts with a triple helix-forming oligonucleotide: characterization of psoralen monoadduct and crosslink formation. Nucleic Acids Res. 22, 2845–2852.

    Article  PubMed  CAS  Google Scholar 

  10. Havre, P. A., Gunther, E. J., Gasparro, F. P., and Glazer, P. M. (1993) Targeted mutagenesis of DNA using triple helix forming oligonucleotides linked to psoralen. Proc. Natl. Acad. Sci. USA 90, 7879–7883.

    Article  PubMed  CAS  Google Scholar 

  11. Havre, P. A. and Glazer, P. M. (1993) Targeted mutagenesis of SV40 DNA mediated by a triple-helix forming oligonucleotide. J. Virol. 67, 7324–7331.

    PubMed  CAS  Google Scholar 

  12. Wang, G., Levy, D. D., Seidman, M. M., and Glazer, P. M. (1994) Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation. Mol. Cell. Biol. 15, 1759–1768.

    Google Scholar 

  13. Griffin, L. C., Kiessling, L. L., Beal, P. A., Gillespie, P., and Dervan, P. B. (1992) Recognition of all four basepairs of double-helical DNA by triple-helix formation. Design of nonnatural deoxyribonucleosides for pyrimidine-purine basepair binding. J. Am. Chem Soc. 114, 7976–7982.

    Article  CAS  Google Scholar 

  14. Koh, J. S. and Dervan, P. B. (1992) Design of nonnatural deoxyribonucleoside for recognition of GC base pairs by oligonucleotide-directed triple helix formation. J. Am. Chem. Soc. 114, 1470–1478.

    Article  CAS  Google Scholar 

  15. Stilz, H. U. and Dervan, P. B. (1993) Specific recognition of CG basepairs by 2-deoxynebularine within the purine.purine.pyrimidine triple helix motif. Biochemistry 32, 2177–2185.

    Article  PubMed  CAS  Google Scholar 

  16. Parris, C. N. and Seidman, M. M. (1992) A signature element distinguishes sibling and independent mutations in a shuttle vector plasmid. Gene 117, 1–5.

    Article  PubMed  CAS  Google Scholar 

  17. Li, H., Cut, X., and Arnheim, N. (1990) Direct electrophoretic detection of the allelic state of single DNA molecules in human sperm by using the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 4580–4584.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc.

About this protocol

Cite this protocol

Glazer, P.M., Wang, G., Havre, P.A., Gunther, E.J. (1996). Targeted Mutagenesis Mediated by the Triple Helix Formation. In: Trower, M.K. (eds) In Vitro Mutagenesis Protocols. Methods In Molecular Medicine™, vol 57. Humana Press. https://doi.org/10.1385/0-89603-332-5:109

Download citation

  • DOI: https://doi.org/10.1385/0-89603-332-5:109

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-332-0

  • Online ISBN: 978-1-59259-544-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics