Skip to main content

Polymer-Supported Electrofusion of Protoplasts

A Novel Method and a Synergistic Effect

  • Protocol
Plant Cell Electroporation and Electrofusion Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 55))

  • 832 Accesses

Abstract

Effective membrane electroporation is a direct and fast (in the millisecond range) field effect when an external electric field (EF) is applied. The applied field strength E induces the ionic interfacial transmembrane potential difference Δϕ m , which represents a contribution E m (Δϕ m ) (transmembrane field strength) to the mean EF force, causing structural rearrangements Δξ in the membrane phase. In brief, the electroporation is a sequence (1):

(1)

Theory guides the relationship:

(2)

where r is the cell radius and θ is the angle between membrane site and E vector. The conductivity factor f(κ) is an explicit function of the geometry of the cell and the conductivity of the solution, the membrane, and the cell interior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neumann, E. (1992) Membrane electroporation and direct gene transfer. Bioelectrochem. Bioenerg. 28, 247–268.

    Article  CAS  Google Scholar 

  2. Kinosita, K. and Tsong, T. Y. (1977) Hemolysis of human erythrocytes by a transient electric field. Proc. Natl. Acad. Sci. USA 74, 1923–1927.

    Article  PubMed  CAS  Google Scholar 

  3. Zimmermann, U., Vienken, J., and Pilwat, G. (1980) Development of drug carrier systems electric field induced effects in cell membranes. J. Electroanal. Chem. 116, 553–574.

    Article  Google Scholar 

  4. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845.

    PubMed  CAS  Google Scholar 

  5. Barnett, A. and Weaver, J. C. (1991) Electroporation: a unified, quantitative theory of reversible electrical breakdown and rupture. Bioelectrochem. Bioenerg. 25, 163–182.

    Article  CAS  Google Scholar 

  6. Sugar, I. P. and Neumann, E. (1984) Stochastic model for electric field-induced membrane pores. Electroporation Biophys. Chem. 19, 211–225.

    Article  CAS  Google Scholar 

  7. Teissie, J., Knutson, V. P., Tsong, T. Y., and Lane, M. D. (1982) Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science 216, 537,538.

    Article  PubMed  CAS  Google Scholar 

  8. Sowers, A. E. (ed.) (1987) Cell Fusion. Plenum, New York.

    Google Scholar 

  9. Neumann, E., Sowers, A. E., and Jordan, C. A. (eds.) (1989) Electroporation and Electrofusion Cell Biology. Plenum, New York.

    Google Scholar 

  10. Weaver, J. C. and Barnett, A. (1992) Progress toward a theoretical model for electroporation mechanism membrane electrical behavior and molecular transport, in Guide to Electroporation and Electrofusion. (Chang, D. C., Saunders, J. A., Chassy, B. M., and Sowers, A. E., eds.) Academic, San Diego, pp. 91–118.

    Google Scholar 

  11. Abidor, I. G., Arakelyan, V. B., Chernomordik, L. V., Chizmadzhev, Y. A., Pastushenko, V. F., and Tarasevich, M. R. (1979) Electric breakdown of bilayer lipid membranes. I The main experimental facts and their qualitative discussion. Bioelectrochem. Bioenerg. 6, 37–52.

    Article  CAS  Google Scholar 

  12. Dimitrov, D. S. and Sowers, A. E. (1990) Membrane electroporation—fast molecular exchange by electroosmosis. Biochem. Biophys. Acta. 1022, 381–392.

    Article  PubMed  CAS  Google Scholar 

  13. Glaser, R. W., Leikin, S. L., Chernomordik, L. V., Pastushenko, V. F., and Sokirko, A. I. (1988) Reversible electrical breakdown of lipid bilayers formation and evolution of pores. Biochem. Biophys. Acta. 940, 275–287.

    Article  PubMed  CAS  Google Scholar 

  14. Neumann, E. (1981) Principles of electric field effects in chemical and biological systems, in Topics in Bioelectrochemistry and Bioenergetics, vol. 4 (Milazzo, G., ed.) Wiley, New York, pp. 114–160.

    Google Scholar 

  15. Dimitrov, D. S. (1993) Kinetics mechanisms of membrane fusion mediated by electric fields. Bioelectrochem. Bioenerg. 32, 99–124.

    Article  CAS  Google Scholar 

  16. Sukharev, S. I., Klenchin, V. A., Serov, S. M., Chernomordik, L. V., and Chizmadzhev, Y. A. (1992) Electroporation and electrophoretic DNA transfer into cells. Biophys. J. 63, 1320–1327.

    Article  PubMed  CAS  Google Scholar 

  17. Neumann, E., Sprafke, A., Boldt, E., and Wolf, H. (1992) Biophysical considerations of membrane electroporation, in Guide to Electroporation and Electrofusion. (Chang, D. C., Saunders, J. A., Chassy, B. M., and Sowers, A. E., eds.) Academic, San Diego, pp. 77–90.

    Google Scholar 

  18. Van Oss, C. J., Arnold, K., and Coakley, W. T. (1990) Depletion flocculation and depletion stabilization of erythrocytes. Cell Biophys. 17, 1–10.

    PubMed  Google Scholar 

  19. Hui, S. W. and Born, L. T. (1991) Membrane fusion induced by polyethylene glyco, in Membrane Fusion. (Wilschut, J. and Hoekstra, D., eds.) Marcel Dekker, New York, pp. 231–253.

    Google Scholar 

  20. Arnold, K., Krumbiegel, M., Zschornig, O., Barthel D., and Ohki, Sh. (1991) Influence of polar polymers on the aggregation and fusion of membranes, in Cell and Model Membrane Interactions. (Ohki, S., ed.) Plenum, New York, pp. 63–87.

    Chapter  Google Scholar 

  21. Zschornig, O., Arnold, K., Richter, W., and Ohki, S. (1992) Dextran sulfate-dependent fusion of liposomes containing cationic stearylamme. Chem. Phys. Lipids 63, 15–22.

    Article  PubMed  CAS  Google Scholar 

  22. Arnold, K. (1994) Cation-induced vesicle fusion modulated by polymers and proteins, in Biophysics Handbook on Membranes I Structure and Conformation. (Sackman, E. and Lipowsky, R., eds.) Elsevier, Amsterdam, pp. 865–916.

    Google Scholar 

  23. Mitsuya, H., Looney, D. J., Kuno, S., Ueno, R., Wong-Staal, F., and Broder, S. (1988) Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4+ cells. Science 240, 646–649.

    Article  PubMed  CAS  Google Scholar 

  24. Sowers, A. E. (1990) Low concentrations of macromolecular solutes significantly affect electrofusion yield in erythrocyte ghosts. Biochem. Biophys. Acta. 1025, 247–251.

    Article  PubMed  CAS  Google Scholar 

  25. Tsay, Sh., Ernst, R., and Hoffmann, F. (1994) Design, synthesis and application of surface-active chemicals for the promotion of electrofusion of plant protoplasts. Bioelectrochem. Bioenerg. 34(2), 115–122.

    Article  Google Scholar 

  26. Tempelaar, M. J. and Jones, M. G. K. (1985) Fusion characteristics of plant protoplasts in electric fields. Planta 165, 205–216.

    Article  Google Scholar 

  27. Tempelaar, M. J., Duyst, A., De Vlas, S. Y., Krol, G., Symmonds, C., and Jones, M. G. K. (1987) Modulation and direction of the electrofusion response in plant protoplasts. Plant Sci. 48, 99–105.

    Article  CAS  Google Scholar 

  28. Nea, L. J. and Bates, G. W. (1987) Factors affecting protoplasts electrofusion efficiency. Plant Cell Rep. 6, 337–340.

    Article  CAS  Google Scholar 

  29. Montane, M. H. and Teissie, J. (1992) Electrostimulation of plant protoplast division part 1 Experimental results. Bioelectrochem. Bioenerg. 29, 59–70.

    Article  CAS  Google Scholar 

  30. Rols, M. and Teissie, J. (1990) Implications of membrane interface structural forces in electropermeabilization and fusion. Bioelectrochem. Bioenerg. 24, 101–111.

    Article  CAS  Google Scholar 

  31. Brown, R. E., Bartoletti, D. C., Harrison, G. I., Gamble, T. R., Bliss, J. G., Powell, K. T., and Weaver, J. C. (1992) Multiple-pulse electroporation. uptake of a macro-molecule by individual cells of Saccharomyces cerevisiae. Bioelectrochem. Bioenerg. 28, 235–246.

    Article  CAS  Google Scholar 

  32. Arnold, K., Ohki, Sh., and Krumbiegel, M. (1990) Interaction of detran sulfate with phospholipid surfaces and liposome aggregation and fusion. Chem. Phys. Lipids 55, 301–307.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, L., Fredler U., and Berg, H. (1992) Modification of electrofusion of barley protoplasts by membrane-active substances. Bioelectrochem. Bioenerg. 27(2), 87–96.

    Article  Google Scholar 

  34. Helm, C. A. and Israelachvili, J. N. (1993) Forces between phospholipid bilayers and relationship to membrane firston, in Methods in Enzymology, vol. 220, Membrane Fusion Techniques. (Duzgünes, N., ed.) Academic, San Diego, pp. 130–143.

    Chapter  Google Scholar 

  35. Israelachvili, J. N. (ed.) (1991) Intermolecular and Surface Forces Academic, San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zhang, L. (1995). Polymer-Supported Electrofusion of Protoplasts. In: Nickoloff, J.A. (eds) Plant Cell Electroporation and Electrofusion Protocols. Methods in Molecular Biology™, vol 55. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-328-7:189

Download citation

  • DOI: https://doi.org/10.1385/0-89603-328-7:189

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-328-3

  • Online ISBN: 978-1-59259-542-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics