Pollen Electrotransformation in Tobacco

  • James A. Saunders
  • Benjamin F. Matthews
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 55)

Abstract

Numerous techniques have been developed to transfer genes into plants to create genetically engineered crops that can tolerate environmental stresses, and to improve productivity and quality. The search for easier, more efficient techniques to transfer genes continues because the efficiencies of current techniques are low and recovering fertile transgenic plants is difficult and time consuming with some plant species.

Keywords

Clay Sucrose Corn Acetone Sedimentation 

References

  1. 1.
    Hess, D. (1987) Pollen-based techniques in genetic manipulation. Inter. Rev. Cytol. 107, 367–395.CrossRefGoogle Scholar
  2. 2.
    De Wet, J. M. J., Bergquist, R. R., Harlan, J. F., Brink, D. E., Cohen, C. E., Newell, C. A., and De Wet, A.-E. (1985) Exogenous gene transfer in maize (Zea mays) using DNA-treated pollen, in Experimental Manipulation of Ovule Tissues. (Chapman, G. P., Mantell, S. H., and Daniels, R. W., eds.) Longman, London, pp. 197–209.Google Scholar
  3. 3.
    Ohta, Y. (1986) High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. USA 83, 715–719.PubMedCrossRefGoogle Scholar
  4. 4.
    Pandey, K. K. (1978) Gametic gene transfer in Nicotiana by means of irradiated pollen. Genetica 49, 53–69.CrossRefGoogle Scholar
  5. 5.
    Pandey, K. K. (1980) Further evidence for egg transformation in Nicotiana. Heredity 45, 15–29.CrossRefGoogle Scholar
  6. 6.
    Sanford, J. C., Skubik, K. A., and Reisch, B. I. (1985) Attempted pollen-mediated plant transformation employing genomic donor DNA. Theor. Appl. Genet. 69, 571–574.CrossRefGoogle Scholar
  7. 7.
    Matousek, J. and Tupy, J. (1983) The release of nucleases from tobacco pollen. Plant Sci. Lett. 30, 83–89.CrossRefGoogle Scholar
  8. 8.
    Roeckel, P., Heizmann, P., Dubois, M., and Dumas, C. (1988) Attempts to transform Zea mays via pollen grains, effect of pollen and stigma nuclease activities. Sex Plant Reprod. 1, 156–163.CrossRefGoogle Scholar
  9. 9.
    Abdul-Baki, A. A., Saunders, J. A., Matthews, B. F., and Pittarelli, G. W. (1990) DNA uptake by electroporation of germinating pollen grains. Plant Sci. 70, 181–190.CrossRefGoogle Scholar
  10. 10.
    Matthews, B. F., Abdul-Baki, A. A., and Saunders, J. A. (1990) Expresston of a foreign gene in electroporated pollen grains of tobacco. Sex Plant Reprod. 3, 147–151.CrossRefGoogle Scholar
  11. 11.
    Smith, C. R., Saunders, J. A., Van Wert, S., Cheng, J., and Matthews, B. F. (1994) Expression of GUS and CAT activities using electrotransformed pollen. Plant Sci. 104, 49–58.CrossRefGoogle Scholar
  12. 12.
    Van Wert, S. L. and Saunders J. A. (1992) Reduction of nuclease activity released from germinating pollen under conditions used for pollen electrotransformation. Plant Sci. 84, 11–16.CrossRefGoogle Scholar
  13. 13.
    Dickinson, D. B. (1968) Rapid starch synthesis associated with increased respiration in germinating lily pollen. Plant Phys. 43, 1–8.CrossRefGoogle Scholar
  14. 14.
    Matousek, J. and Tupy, J. (1984) Purification and properties of extracellular nuclease from tobacco pollen. Bio. Plantarum 26, 62–73.CrossRefGoogle Scholar
  15. 15.
    Saunders, J. A., Lin, C. H., Cheng, J., Tsengwa, N., Lin, J. J., Smith, C. R., McIntosh, M., and Wert, S. V. (1994) Rapid optimization of electroporation conditions for plant cells, protoplasts, and pollen. Mol. Biotechnol. (in press).Google Scholar
  16. 16.
    Saunders, J. A., Roskos, L. A., Mischke, B. S., Aly, M., and Owens, L. D. (1986) Behavior and viability of tobacco protoplasts in response to electrofusion parameters. Plant Physiol. 80, 117–121.PubMedCrossRefGoogle Scholar
  17. 17.
    Abdul-Baki, A. A. (1992) Determination of pollen viability in tomatoes. J. Am. Soc. Hort. Sci. 117(3), 473–476.Google Scholar
  18. 18.
    Fromm, M., Taylor, L. P., and Walbot, V. (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA 82, 5824–5828.PubMedCrossRefGoogle Scholar
  19. 19.
    Fromm, M. E., Taylor, L. P., and Walbot, V. (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319, 791–793.PubMedCrossRefGoogle Scholar
  20. 20.
    Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Inhibition of gene expression in plant cells by expression of antisense RNA. EMBO J. 1, 841–845.PubMedGoogle Scholar
  21. 21.
    Wong, T. K. and Neumann, E. (1982) Electric field mediated gene transfer. Biochem. Biophys. Res. Comm. 107, 584–587.PubMedCrossRefGoogle Scholar
  22. 22.
    Potter, H., Weir, L., and Leder, P. (1984) Enhancer-dependent expression of human κ immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA 81, 7161–7165.PubMedCrossRefGoogle Scholar
  23. 23.
    Weber, H., Forester, W., and Jacob, H. E. (1981) Parasexual hybridization of yeasts by electric field stimulated fusion of protoplasts. Curr. Genet. 4, 165,166.CrossRefGoogle Scholar
  24. 24.
    Saunders, J. A., Matthews, B. F., and Van Wert, S. L. (1991) Pollen electrotransformation for gene transfer in plants, in Guide to Electroporation and Electrofusion. (Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E., eds.), Academic, San Diego, CA, pp. 227–247.Google Scholar
  25. 25.
    Saunders, J. A., Matthews, B. F., and Miller, P. D. (1989) Plant gene transfer using electrofusion and electroporation, in Electroporation and Electrofusion in Cell Biology. (Neumann, E., Sowers, A., and Jordan, C., eds.) Plenum, New York, pp. 343–354.Google Scholar
  26. 26.
    Liang, H., Purucker, W. J., Stenger, D. A., Kubiniec, R. T., and Hui, S. W. (1988) Uptake of fluorescence-labeled dextrans by 10T 1/2 fibroblasts following permeation by rectangular and exponential electric field pulses. BioTechniques 6, 550–558.PubMedGoogle Scholar
  27. 27.
    Benz, R., Zimmermann, U., and Wecker, E. (1981) High electric fields effects on the cell membranes of Halicystis parvula: a charge-pulse study. Planta 152, 314–318.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1995

Authors and Affiliations

  • James A. Saunders
    • 1
  • Benjamin F. Matthews
    • 2
  1. 1.Soybean and Alfalfa Research Laboratory, Plant Sciences InstituteUSDA-ARSBeltsville
  2. 2.Plant Molecular Biology LaboratoryUSDA-ARSBeltsville

Personalised recommendations