Skip to main content

Isolation and Characterization of Plant Genomic DNA Sequences via (Inverse) PCR Amplification

  • Protocol
Plant Gene Transfer and Expression Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 49))

Abstract

Today the isolation and characterization of a gene of interest from any organism has become a standard procedure. One of the milestones that have facilitated this procedure in particular, has been the development of in vitro techniques for amplification of specific RNA or DNA sequences. By far the most important amplification technique, the polymerase chain reaction (PCR), was proposed more than 20 years ago (1), but only reached its practical form in 1985 (2). The basic principle is that following heat denaturing of the DNA sample two oligodeoxynucleotide primers are allowed to anneal to their target DNA sequences located at the opposite DNA strand. In the presence of deoxynucleotide triphosphates, DNA polymerase synthesizes new strands from the 3′ hydroxyl ends of the primers, doubling the number of copies of the target DNA segment. Repeated cycles of denaturation, primer annealing and extension eventually result m accumulation of the DNA segment defined by the primers. In 1985 Saiki et al. (2) used the Klenow fragment of Escherichiu coli DNA polymerase I, which because of its heat-sensitivity had to be added to the reaction mixture after each denaturation step. The discovery and application of the heat stable DNA polymerase from the thermophilic bacterium Thermus aquaticus for PCR and the automation of the procedure (3) laid the foundation for the development of numerous and diverse PCR methods (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Spiral binding cover Book
USD 169.99
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kleppe, K., Ohtsuka, E., and Kleppe, R. (1971) Studies on polynucleotides XCVI. Repair replications of short synthetic DNAs as catalyzed by DNA polymerases. J. Mol. Biol. 56, 341–361.

    Article  PubMed  CAS  Google Scholar 

  2. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Amheim, N. (1985) Enzymatic amplification of β-Globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  3. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  4. Innes, M. A., Gelfland, D. H., Shinsky, J. J., and White, T. J. (1990) PCR Protocols A Guide to Methods and Applications. Academic, San Diego.

    Google Scholar 

  5. Williams, M. N. V., Pandé, N., Nair, S., Mohan, M., and Bennett, J. (1991) Restriction fragment length polymorphism analysis of polymerase chain reaction products amplified from mapped loci of rice (Oryza sativa L.) genomic DNA. Theor. Appl. Genet. 82, 489–498.

    Article  CAS  Google Scholar 

  6. Meyer, R. M., Mamatis, T., and Lerman, L. S. (1987) Detection and localization of single-base-pair changes by denaturing gradient gel electrophoresis. Meth. Enzymol 155, 501–527.

    Article  Google Scholar 

  7. Hayashi, H. (1991) PCR-SSCP. a simple and sensitive method for detection of mutations in the genomic DNA. PCR Meth. Appl. 1, 34–38.

    CAS  Google Scholar 

  8. To, K.-Y., Liu, C.-I., Liu, S.-T., and Chang, Y.-S. (1993) Detection of point mutations in the chloroplast genome by single-stranded conformation polymorphism analysis. Plant J. 3, 183–l86.

    Article  PubMed  CAS  Google Scholar 

  9. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  10. Hooykaas, P. J. J. and Schilperoort, R. A. (1992) Agrobacterium and plant genetic engineering. Plant Mol. Biol. 19, 15–38.

    Article  PubMed  CAS  Google Scholar 

  11. Feldmann, K. A. (1991) T-DNA insertion mutagenesis m Arabidopsis mutational spectrum. Plant J. 1, 71–82.

    Article  CAS  Google Scholar 

  12. Koncz, C., Németh, K., Rédei, G. P., and Schell, J. (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol. Biol. 20, 963–976.

    Article  PubMed  CAS  Google Scholar 

  13. Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G. P., and Schell, J. (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86, 8467–8471.

    Article  PubMed  CAS  Google Scholar 

  14. Goddijn, O.J M., Lindsey, K., van der Lee, F. M., Klap, J. C., and Sijmons, P. C. (1993) Differential gene expression in nematode-induced feeding structures of transgenic plants harbouring promoter-gusA fusion constructs. Plant J. 4, 863–873.

    Article  PubMed  CAS  Google Scholar 

  15. Kim, H.-S., and Smithies, O. (1988) Recombination fragment assay for gene targeting based on the polymerase chain reaction. Nucleic Acids Res. 16, 8887–8903.

    Article  PubMed  CAS  Google Scholar 

  16. Offringa, R., de Groot, M. J. A., Haagsman, H. J., Does, M. P., van den Elzen, P. J. M., and Hooykaas, P. J. J. (1990) Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium-mediated transformation. EMBO J. 9, 3077–3084.

    PubMed  CAS  Google Scholar 

  17. Offringa, R., Franke-van Dijk, M. E. I., de Groot, M. J. A., van den Elzen, P. J. M., and Hooykaas, P. J. J. (1993) Nonreciprocal homologous recombination between Agrobacterium transferred DNA and a plant chromosomal locus. Proc. Natl. Acad. Sci. USA 90, 7346–7350.

    Article  PubMed  CAS  Google Scholar 

  18. Meyerhans, A., Vartanian, J.-P., and Wain-Hobson, S. (1990) DNA recombination during PCR. Nucleic Acids Res. 18, 1687–1691.

    Article  PubMed  CAS  Google Scholar 

  19. Marton, A., Delbecchi, L., and Bourgaux, P. (1991) DNA nicking favors PCR recombination. Nucleic Acids Res. 19, 2423–2426.

    Article  PubMed  CAS  Google Scholar 

  20. Risseeuw, E., Offringa, R., Franke-van Dyk, and Hooykaas, P. J. J. (1995) Targeted recombination in plants using Agrobacterium coincides with additional rearrangements at the target locus. Plant J. 7, 109–119

    Article  PubMed  CAS  Google Scholar 

  21. Ochman, H., Gerber, A. S., and Hartl, D. L. (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623.

    PubMed  CAS  Google Scholar 

  22. Does, M. P., Dekker, B. M. M., de Groot, M. J. A., and Offringa, R. (1991) A quick method to estimate the T-DNA copy number m transgenic plants at an early stage after transformation, using Inverse PCR. Plant Mol. Biol. 17, 151–153.

    Article  PubMed  CAS  Google Scholar 

  23. Jongedijk, E., de Schutter, A. A. J. M., Stolte, T., van den Elzen, P. J. M., and Cornelissen, B. J. C. (1992) Increased resistance to potato virus X and preservation of cultivar properties in transgenic potato under field conditions. Bio/Technol. 10, 422–429.

    Article  CAS  Google Scholar 

  24. Vancanneyt, G., Schmidt, R., O’Conner-Sanchez, A., Willmitzer, L., and Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene Splicing of the intron in transgenic plants and its use in monitoring early events in Argobacterium-mediated plant transformation. Mol. Gen. Genet. 220, 245–250.

    Article  PubMed  CAS  Google Scholar 

  25. Berthomieu, P. and Meyer, C. (1991) Direct amplification of plant genomic DNA from leaf and root pieces using PCR Plant Mol. Biol. 17, 555–557.

    Article  PubMed  CAS  Google Scholar 

  26. Langridge, U., Schall, M., and Langridge, P., (1991) Squashes of plant tissue as substrate for PCR. Nucleic Acids Res. 19, 6954.

    Article  PubMed  CAS  Google Scholar 

  27. Klimyuk, V. I., Carroll, B. J., Thomas, C. M., and Jones, J. D. G. (1993) Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J. 3, 493–494.

    Article  PubMed  CAS  Google Scholar 

  28. Lassner, M. W., Peterson, P., and Yoder, J. I. (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol. Biol. Rept. 7, 116–128.

    Article  CAS  Google Scholar 

  29. Kilby, N. J. and Furner, I. J. (1993) Another CTAB protocol Isolation of high molecular weight DNA from small quantities of Arabidopsis tissue, in AAtDB Research Companion for Arabidopsis Information, WWW http weeds mgh harvard edu, Arabidopsis Compleat Guide (Dean, C. and Flanders, D., eds), Massachusetts General Hospital, Boston.

    Google Scholar 

  30. Mettler, I. J. (1987) A simple and rapid method for minipreparation of DNA from tissue cultured plant cells. Plant Mol. Biol Rept. 5, 344–349.

    Google Scholar 

  31. Rao, V. B. (1994) Direct sequencing of polymerase chain reaction-amplified DNA. Anal. Biochem. 216, 1–14.

    Article  PubMed  CAS  Google Scholar 

  32. Marchuk, D., Drumm, M., Saulino, A., and Collins, F. S. (1991) Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 19, 1154.

    Article  PubMed  CAS  Google Scholar 

  33. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  34. Holmes, D. S. and Quigley, M. (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114, 193–197.

    Article  PubMed  CAS  Google Scholar 

  35. Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513.

    Article  PubMed  CAS  Google Scholar 

  36. Keohavong, P and Thilly, W. G. (1989) Fidelity of DNA polymerase in DNA amplification. Proc. Natl. Acad. Sci. USA 86, 9253–9257.

    Article  PubMed  CAS  Google Scholar 

  37. Cariello, N. F., Swenberg, J. A., and Skopek, T. R. (1991) Fidelity of Thermococcus litoralis DNA Polymerase (Vent™) in PCR determined by denaturing gradient gel electrophoresis. Nucleic Acids Res. 19, 4193–4198.

    Article  PubMed  CAS  Google Scholar 

  38. Mattila, P., Korpela, J., Tenkanen, T., and Pitkanen, K. (1991) Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase—an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res. 19, 4967–4973.

    Article  PubMed  CAS  Google Scholar 

  39. Lundberg, K. S., Shoemaker, D. D., Adams, M. W. W., Short, J. M., Sorge, J. A., and Mathur, E. J. (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108, 1–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Offringa, R., van der Lee, F. (1995). Isolation and Characterization of Plant Genomic DNA Sequences via (Inverse) PCR Amplification. In: Jones, H. (eds) Plant Gene Transfer and Expression Protocols. Methods in Molecular Biology™, vol 49. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-321-X:181

Download citation

  • DOI: https://doi.org/10.1385/0-89603-321-X:181

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-321-4

  • Online ISBN: 978-1-59259-536-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics