Skip to main content

Transformation of Cereals by Microprojectile Bombardment of Immature Inflorescence and Scutellum Tissues

  • Protocol
Plant Gene Transfer and Expression Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 49))

Abstract

The cereals are one of the groups of crops more recalcitrant to transformation. Since, with the exception of rice (1), cereals have not been transformed by Agrobacterium, and highly regenerable protoplast systems are difficult to obtain, these species have remained untransformed for a much longer time than the major dicot species. It was not until 1988 and 1989 that the first transgenic cereal plants (maize [2]; rice [3]) were produced by the use of direct DNA-transfer into protoplasts. This method, however, has not yet given rise to transgenic wheat or barley plants, species in which the protoplast systems established are not as regenerative and stable as those developed for rice or maize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Spiral binding cover Book
USD 169.99
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282.

    Article  PubMed  CAS  Google Scholar 

  2. Rhodes, C. A., Pierce, D. A., Mettler I. J., Mascarenhas, D., and Detmer, J. J. (1988) Genetically transformed maize plants from protoplasts. Science 240, 204–207.

    Article  PubMed  CAS  Google Scholar 

  3. Shimamoto, K., Terada, R., Izawa, T., and Fujimoto, H. (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338, 274–276.

    Article  CAS  Google Scholar 

  4. Sanford, J. C., Klein, T. M., Wolf, E. D., and Allen, N. (1987) Delivery of substances into cells and tissues using a particle bombardment process. J. Part. Sci Technol. 5, 27–37.

    Article  CAS  Google Scholar 

  5. Gordon-Kamm, W. J., Spencer, T. M., Mangano, M. L, Adams, T. R., Daines, R J., Start, W. G., OBrien, J. V., Chambers, S. A., Adams, W. R., Jr., Willets, N. G., Rice, T. B., Mackey, C. J., Krueger, R. W, Kausch, A. P., and Lemaux, P. G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2, 603–618.

    Article  PubMed  CAS  Google Scholar 

  6. Cao, J., Duan, X., McElroy, D., and Wu, R. (1992) Regeneration of herbicide resistant transgenic race plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Reps. 11, 586–591.

    CAS  Google Scholar 

  7. Vasil, V., Castillo, A. M., Fromm, M. E., and Vasil, I. K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10, 667–674.

    Article  CAS  Google Scholar 

  8. Christou, P., Ford, T. L., and Kofron, M. (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9, 957–962.

    Article  Google Scholar 

  9. Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M. R., Merlin, E., Rhodes, R., Warren, G. W., Wright, M., and Evola, S. V. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11, 194–200.

    Article  CAS  Google Scholar 

  10. Weeks, T., Anderson, O. D., and Blechl, A. E. (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102, 1077–1084.

    PubMed  CAS  Google Scholar 

  11. Vasil, V., Srivastava, V., Castillo, A. M., Fromm, M. E., and Vasil, I. K. (1993) Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11, 1553–1558.

    Article  Google Scholar 

  12. Becker, D., Brettschneider, R., and Lorz, H. (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 5, 299–307.

    Article  PubMed  CAS  Google Scholar 

  13. Nehra, N. S., Chibbar, R. N., Leung, N., Caswell, K., Mallard, C., Steinhauer, L., Baga, M., and Kartha, K. K. (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5, 285–297.

    Article  CAS  Google Scholar 

  14. Wan, Y. and Lemaux, P. G. (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104, 37–48.

    PubMed  CAS  Google Scholar 

  15. Barcelo, P., Vazquez, A., and Martin, A. (1989) Somatic embryogenesis and plant regeneration from tritordeum. Plant Breeding 103, 235–240.

    Article  Google Scholar 

  16. Barcelo, P., Hagel, C., Becker, D., Martin, A., and Lorz, H. (1994) Transgenic cereal (tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. Plant J. 5, 583–592.

    Article  PubMed  CAS  Google Scholar 

  17. Martin, A. and Sanchez-Monge, E. (1982) Cytology and morphology of the amphiploid Hordeum chilense x Triticum turgidum conv. durum Euphytica 31, 261–267.

    Google Scholar 

  18. Lazzeri, P. A. and Shewry, P. R. (1993) Biotechnology of cereals, in Biotechnology and Genetic Engineering Reviews, vol. 11 (Tombs M. P., ed.), Intercept Ltd., Andover, MD, pp. 79–145.

    Google Scholar 

  19. McElroy, D., Zhang, W., Cao, J., and Wu, R. (1990) Isolation of an efficient Actin promoter for use in rice transformation. Plant Cell 2, 163–171.

    Article  PubMed  CAS  Google Scholar 

  20. Callis, J., Fromm, M., and Walbot, V. (1987) Introns increase gene expression in cultured maize cells. Genes Dev. 1, 1183–1200.

    Article  PubMed  CAS  Google Scholar 

  21. Jefferson, R. A. (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–405.

    Article  CAS  Google Scholar 

  22. Schreier, P. H., Seftot, E. A., Schell, J., and Bohnert, H. J. (1985) The use of nuclear encoded sequences to detect the light regulated synthesis and transport of a foreign protein into plant chloroplast. EMBO J. 4, 25–32.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Barcelo, P., Lazzeri, P.A. (1995). Transformation of Cereals by Microprojectile Bombardment of Immature Inflorescence and Scutellum Tissues. In: Jones, H. (eds) Plant Gene Transfer and Expression Protocols. Methods in Molecular Biology™, vol 49. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-321-X:113

Download citation

  • DOI: https://doi.org/10.1385/0-89603-321-X:113

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-321-4

  • Online ISBN: 978-1-59259-536-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics