Tools for Expressing Foreign Genes in Plants

  • François Guerineau
Part of the Methods in Molecular Biology™ book series (MIMB, volume 49)


Since the first reports of tobacco transformation experiments in 1983, a number of fundamental processes, such as gene expression, cell metabolism, or plant development, are being studied using gene transfer experiments. The spectrum of plant species amenable to transformation is continuously widening. This is partly because of the refinement of tissue culture techniques and also because of the development of more and more diverse tools for gene transfer and expression. In this chapter, I will give a list of plasmid constructs containing various components useful for expressing foreign genes in plants: expression cassettes into which genes of interest can easily be inserted, assayable reporter genes that allow accurate quantification of gene expression, selectable marker genes for the selection of transformants, and plant promoters to achieve more specific patterns of gene expression.


Expression Cassette Transit Peptide Glutenin Subunit Selectable Marker Gene Cytosine Deaminase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kay, R., Chan, A., Daly, M., and McPherson, J. (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236, 1299–1302.PubMedCrossRefGoogle Scholar
  2. 2.
    Pietrzak, M., Shillito, R. D., Hohn, T., and Potrykus, I. (1986) Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res. 14, 5857–5868.PubMedCrossRefGoogle Scholar
  3. 3.
    Guerineau, F., Lucy, A., and Mullineaux, P. (1992) Effect of two consensus sequences preceding the translation initiator codon on gene expression in plant protoplasts. Plant Mol. Biol. 18, 815–818.PubMedCrossRefGoogle Scholar
  4. 4.
    Schardl, C. L., Byrd, A. D., Benzion, G., Altschuler, M. A., Hildebrand, D. F., and Hunt, A. G. (1987) Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61, 1–11.PubMedCrossRefGoogle Scholar
  5. 5.
    Topfer, R., Matzeit, V., Gronenborn, B., Schell, J., and Steinbiss, H. H. (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res. 15, 5890.PubMedCrossRefGoogle Scholar
  6. 6.
    Jones, J. D. G., Dunsmuir, P., and Bedbrook, J. (1985) High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J. 4, 2411–2418.PubMedGoogle Scholar
  7. 7.
    Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947–950.PubMedCrossRefGoogle Scholar
  8. 8.
    Lutcke, H. A., Chow, K. C., Mickel, F. S., Moss, K. A., Kern, H. F., and Scheele G. A. (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J. 6, 43–48.PubMedGoogle Scholar
  9. 9.
    Guerineau, F. and Mullineaux, P. (1993) Plant transformation and expression vectors, in Plant Molecular Biology LABFAX (Croy, R R. D., ed.), ßios Scientific and Blackwell Scientific, Oxford, pp. 121–147.Google Scholar
  10. 10.
    Wasmann, C. C., Reiss, B., Bartlett, S. G., and Bohnert, H. J. (1986) The importance of the transit peptide and the transported protein for protein import into chloroplasts. Mol. Gen. Genet. 205, 44–453.CrossRefGoogle Scholar
  11. 11.
    Guerineau, F., Woolston, S., Brooks, L., and Mullineaux, P. (1988) An expression cassette for targeting foreign proteins into chloroplasts. Nucleic Acids Res. 16, 11,380PubMedCrossRefGoogle Scholar
  12. 12.
    Guerineau, F., Brooks, L., Meadows, J., Lucy, A., Robinson, C., and Mullineaux, P. (1990) Sulfonamide resistance gene for plant transformation. Plant Mol Biol. 15, 127–136.PubMedCrossRefGoogle Scholar
  13. 13.
    Ainley, W. M. and Key, J. L. (1990) Development of a heat shock inducible expression cassette for plants. Characterization of parameters for its use in transient expression assays. Plant Mol Biol. 14, 949–967.PubMedCrossRefGoogle Scholar
  14. 14.
    Jefferson, R. A., Burgess, S. M., and Hush, D. (1986) β-Glucuronidase from Escherihia coli as a gene-fusion marker. Proc Natl. Acad. Sci. USA 83, 8447–8451.PubMedCrossRefGoogle Scholar
  15. 15.
    Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) gus fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.PubMedGoogle Scholar
  16. 16.
    De Wet, J. R., Wood, K. V., Helinski, D. R., and DeLuca, M. (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 82, 787–7873.CrossRefGoogle Scholar
  17. 17.
    Ow., D. W., Wood, K. V., DeLuca, M., de Wet, J. R., Helinski, D. R., and Howell, S. H. (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234, 856–859.PubMedCrossRefGoogle Scholar
  18. 18.
    Mullineaux, P. M., Guerineau, F., and Accotto, G. P. (1990) Processing of complementary sense RNAs of Digitaria streak virus in its host and in transgenic tobacco. Nucleic Acids Res. 18, 7259–7265.PubMedCrossRefGoogle Scholar
  19. 19.
    Riggs, C. D., and Chrispeels, M. J. (1987) Luciferase reporter gene cassettes for plant gene expression studies. Nucleic Acids Res. 15, 8115.PubMedCrossRefGoogle Scholar
  20. 20.
    Alton, N. K., and Vapnek, D. (1979) Nucleotide sequence analysts of the chloramphenicol resistance transposon tn9. Nature 282, 864–869.PubMedCrossRefGoogle Scholar
  21. 21.
    Matsumoto, S., Takebe, I., and Machida, Y. (1988) Escherichia coli lacZ gene as a biochemical and histochemical marker in plant cells. Gene 66, 19–29.PubMedCrossRefGoogle Scholar
  22. 22.
    McDonnell, R. E., Clark, R. D., Smith, W. A., and Hinchee, M. A. (1987) A simplified method for the detection of neomycin phosphotransferase II: activity in transformed plant tissues. Plant Mol. Biol. Rep. 5, 380–386.CrossRefGoogle Scholar
  23. 23.
    De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gosselé, V., Movva, N. R., Thompson, C., Van Montagu, M., and Leemans, J. (1987) Engrneering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6, 2513–2518.PubMedGoogle Scholar
  24. 24.
    Herrera-Estrella, L., De Block, M., Messens, E., Hernalsteens, J. P., Van Montagu, M., and Schell, J. (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2, 987–995.PubMedGoogle Scholar
  25. 25.
    Bevan, M. W., Flavell, R. B., and Chilton, M. D. (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304, 184–187.CrossRefGoogle Scholar
  26. 26.
    Ellis, J. R. (1993) Plant tissue culture and genetic transformation, in Plant Molecular Biology LABFAX (Croy, R. R. D., ed.), ßios Scientific and Blackwell Scientific, Oxford, pp 253–285.Google Scholar
  27. 27.
    Carrer, H., Hockenberry, T. N., Svab, Z., and Maliga, P. (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen. Genet. 241, 49–56.PubMedCrossRefGoogle Scholar
  28. 28.
    Pridmore, R. D. (1987) New and versatile cloning vectors with kanamycin-resistance marker. Gene 56, 309–312.PubMedCrossRefGoogle Scholar
  29. 29.
    Waldron, C., Murphy, E. B., Roberts, J. L., Gustafson, G. D., Armour, S. L., and Malcolm, S. K. (1985) Resistance to hygromycin B: A new marker for plant transformation studies. Plant Mol. Biol. 5, 103–108.CrossRefGoogle Scholar
  30. 30.
    Van den Elzen, P. J. M., Townsend, J., Lee, K. Y., and Bedbrook, J. R. (1985) A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol. 5, 299–302.CrossRefGoogle Scholar
  31. 31.
    Lulsdorf, M. M., Rempel, H., Jackson, J. A., Baliski, D. S., and Hobbs, S. L. A. (1991) Optimizing the production of transformed pea (Pisum sativum L.) callus using disarmed Agrobacterium tumefaciens strains. Plant Cell Rep. 9, 479–483.CrossRefGoogle Scholar
  32. 32.
    Walters, D. A., Vetsch, C. S., Potts, D. E., and Lundquist, R. C. (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 18, 189–200.PubMedCrossRefGoogle Scholar
  33. 33.
    Gritz, L., and Davies, J. (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisae. Gene 25, 179–188.PubMedCrossRefGoogle Scholar
  34. 34.
    Jones, J. D. G., Svab, Z., Harper, E. C., Hurwitz, C. D., and Maliga, P. (1987) A dominant nuclear streptomycin resistance marker for plant cell transformation. Mol. Gen. Genet. 210, 86–91.CrossRefGoogle Scholar
  35. 35.
    Svab, Z., Harper, E. C., Jones, J. D. G., and Maliga, P. (1990) Aminoglycoside-3′-adenyltransferase confers resistance to spectromycin and streptomycin in Nicotiana tabacum. Plant Mol. Biol. 14, 197–205.PubMedCrossRefGoogle Scholar
  36. 36.
    Jones, J. D. G., Carland, F. M., Maliga, P., and Dooner, H. K. (1989) Visual detection of transposition of the maize element Activator (Ac) in tobacco seedlings. Science 244, 204–207.PubMedCrossRefGoogle Scholar
  37. 37.
    Chinault, A. C., Blakesley, V. A., Roessler, E., Willis, D. G., Smith, C. A., Cook, R. G., and Fenwick, Jr., R. G. (1986) Characterization of transferable plasmids from Shigella flexneri 2a that confer resistance to trimethopri, streptomycin, and sulfonamides. Plasmid 15, 119–131.PubMedCrossRefGoogle Scholar
  38. 38.
    Thompson, C. J., Movva, N. R., Tizard, R., Crameri, R., Davies, J. E., Lauwereys, M., and Botterman, J. (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscoptcus. EMBO J. 6, 2519–2523.PubMedGoogle Scholar
  39. 39.
    Somers, D. A., Rines, H. W., Gu, W., Kaeppler, H. F., and Bushnell, W. R. (1992) Fertile, transgenic oat plants. Biotechnology 10, 1589–1594.CrossRefGoogle Scholar
  40. 40.
    Gordon-Kamm, W. J., Spencer, T. M., Mangano, M. L., Adams, T. R., Dames, R. J., Start, W. G., O’Brien, J. V., Chambers, S. A., Adams, Jr., W. R., Willetts, N. G., Rice, T. B., Mackey, C. J., Krueger, R. W., Kausch, A. P., and Lemaux, P. G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2, 603–618.PubMedCrossRefGoogle Scholar
  41. 41.
    Schroeder, H. E., Schotz, A. H., Wardley-Richardson, T., Spencer, D., and Higgins, T. J. V. (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol. 101, 751–757.PubMedCrossRefGoogle Scholar
  42. 42.
    White, J., Chang, S. Y. P., Bibb, M. J., and Bibb, M. J. (1990) A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nucleic Acids. Res. 18, 1062.PubMedCrossRefGoogle Scholar
  43. 43.
    Haughn, G. W., Smith, J., Mazur, B., and Somerville, C. (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211, 266–271.CrossRefGoogle Scholar
  44. 44.
    Sathasivan, K., Haughn, G. W., and Mural, N. (1990) Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolmone-resistant Arabidopsis thaliana var. Columbia. Nucleic Acids. Res. 18, 2188.PubMedCrossRefGoogle Scholar
  45. 45.
    McHugen, A. (1989) Agrobacterium mediated transfer of chlorsulmion resistance to commercial flax cultivars. Plant Cell Rep. 8, 445–449.CrossRefGoogle Scholar
  46. 46.
    Li, Z., Hayashimoto, A., and Murai, N. (1992) A sulfonylurea herbicide resistance gene from Arabidopsis thaliana as a new selectable marker for production offertile transgenic rice plants. Plant Physiol. 100, 662–668.PubMedCrossRefGoogle Scholar
  47. 47.
    Fromm, M. E., Morrish, F., Armstrong, C., Williams, R., Thomas, J., and Klein, T. M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8, 833–839.PubMedCrossRefGoogle Scholar
  48. 48.
    Guerineau, F., and Mullineaux, P. (1989) Nucleotide sequence of the sulfonamide resistance gene from plasmid R46. Nucleic Acids Res. 17, 4370.PubMedCrossRefGoogle Scholar
  49. 49.
    Della-Cioppa, G., Bauer, S. C., Taylor, M. L., Rochester, D. E., Klein, B. K., Shah, D. M., Fraley, R. T., and Kishore, G. M. (1987) Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. Biotechnology 5, 579–584.CrossRefGoogle Scholar
  50. 50.
    Shaw, D. M., Horsch, R. B., Klee, H. J., Kishore, G. M., Winter, J. A., Turner, N. E., Hironaka, C. M., Sanders, P. R., Gasser, C. S., Aykent, S., Siegel, N. R., Rogers, S. G., and Fraley, R. T. (1986) Engineering herbicide tolerance in transgenic plants. Science 233, 478–481.CrossRefGoogle Scholar
  51. 51.
    Stalker, D. M., McBride, K. E., and Malyj, L. D. (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242, 419–423.PubMedCrossRefGoogle Scholar
  52. 52.
    Streber, W. R. and Willmitzer, L. (1989) Transgenic tobacco plants expressing a bacterial detoxifying enzyme are resistant to 2,4-D. Biotechnology 7, 811–816.CrossRefGoogle Scholar
  53. 53.
    Buchanan-Wollaston, V., Snape, A., and Cannon, F. (1992) A plant selectable marker gene based on the detoxification of the herbicide Dalapon. Plant Cell Rep. 11, 627–631.CrossRefGoogle Scholar
  54. 54.
    Hayford, M. B., Medford, J. I., Hoffman, N. L., Rogers, S. G., and Klee, H. J. (1988) Development of a plant transformation selection system based on expression of genes encoding gentamicin acetyltransferases. Plant Physiol. 86, 1216–1222.PubMedCrossRefGoogle Scholar
  55. 55.
    Hauptmann, R. M., Vasil, V., Ozias-Akins, P., Tabaeizadeh, Z., Rogers, S. G., Fraley, R. T., Horsch, R. B., and Vasil, I. K. (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol. 86, 602–606.PubMedCrossRefGoogle Scholar
  56. 56.
    Eichholtz, D. A., Rogers, S. G., Horsch, R. B., Klee, H. J., Hayford, M., Hoffmann, N. L., Braford, S. B., Fink, C., Flick, J., O’Connell, K. M., and Fraley, R. T. (1987) Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in transgenic petunia plants. Somatic Cell Mol. Genet. 13, 67–76.CrossRefGoogle Scholar
  57. 57.
    Hille, J., Verheggen, F., Roelvink, P., Franssen, H., van Kammen, A., and Zabel, P. (1986) Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol. Biol. 7, 171–176.CrossRefGoogle Scholar
  58. 58.
    Perl, A., Galili, S., Shaul, O., Ben-Tzvi, I., and Galili, G (1993) Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: Two novel selectable markers for plant transformation. Biotechnology 11, 715–718.CrossRefGoogle Scholar
  59. 59.
    Goddijn, O. J. M., van der Duyn Schouten, P. M., Schilperoort, R. A., and Hoge, H. C. (1993) A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant Mol. Biol. 22, 907–912.PubMedCrossRefGoogle Scholar
  60. 60.
    Nussaume, L., Vincentz, M., and Caboche, M. (1991) Constitutive nitrate reductase: A dominant conditional marker for plant genetics. Plant J. 1, 267–274.CrossRefGoogle Scholar
  61. 61.
    Perera, R. J., Linard, C. G., and Signer, E. R. (1993) Cytosine deaminase as a negative selective marker for Arabidopsis. Plant Mol. Biol. 23, 793–799.PubMedCrossRefGoogle Scholar
  62. 62.
    Yamamoto, Y. T., Taylor, C. G., Acedo, G. N., Cheng, C. L., and Conkling, M. A. (1991) Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell 3, 371–382.PubMedCrossRefGoogle Scholar
  63. 63.
    Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J., and Willmitzer, L. (1989) Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 8, 23–29.PubMedGoogle Scholar
  64. 64.
    Keller, B., Sauer, N., and Lamb, C. J. (1988) Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J. 7, 3625–3633.PubMedGoogle Scholar
  65. 65.
    Keller, B., Schmid, J., and Lamb, C. J. (1989) Vascular expression of a bean cell wall glycine-rich protein-β-glucuronidase gene fusion in transgenic tobacco. EMBO J. 8, 1309–1314.PubMedGoogle Scholar
  66. 66.
    Keller, B., and Baumgartner, C. (1991) Vascular-specific expression of the bean GRP 1.8 gene is negatively regulated. Plant Cell 3, 1051–1061PubMedCrossRefGoogle Scholar
  67. 67.
    Sugita, M., and Gruissem, W. (1987) Developmental, organ-specific, and light-dependent expression of the tomato ribulose-1,5-bisphosphate carboxylase small subunit gene family. Proc. Natl. Acad. Sci. USA 84, 7104–7108.PubMedCrossRefGoogle Scholar
  68. 68.
    Ueda, T., Pichersky, E., Malik, V. S., and Cashmore, A. R. (1989) Level of expression of the tomato rbcS-3A gene is modulated by a far upstream promoter element in a developmentally regulated manner. Plant Cell 1, 217–227.PubMedCrossRefGoogle Scholar
  69. 69.
    Mitra, A., Choi, H. K., and An, G. (1989) Structural and functional analyses of Arabidopsis thaliana chlorophyll a/b-binding protein (cab) promoters. Plant Mol. Biol. 12, 169–179.CrossRefGoogle Scholar
  70. 70.
    Koes, R. E., Spelt, C. E., and Mel, J. N. M. (1989) The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction. Plant Mol. Biol 12, 213–225.CrossRefGoogle Scholar
  71. 71.
    Bird, C. R., Smith, C. J. S., Ray, J. A., Moureau, P., Bevan, M. W., Bird, A. S., Hughes, S., Morris, P. C., Grierson, D., and Schuch, W. (1988) The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol. Biol. 11, 651–662.CrossRefGoogle Scholar
  72. 72.
    An, G. (1987) Integrated regulation of the photosynthetic gene family from Arabidopsis thaliana in transformed tobacco cells. Mol. Gen. Genet. 207, 210–216.CrossRefGoogle Scholar
  73. 73.
    Koes, R. E., van Blokland, R., Quattrocchio, F., van Tunen, A. J., and Mol, J. N. M. (1990) Chalcone synthase promoters in petuina are active in pigmented and unpigmented cell types. Plant Cell 2, 379–392.PubMedCrossRefGoogle Scholar
  74. 74.
    Van der Meer, I. M., Spelt, C. E., Mol, J. N. M., and Stuitje, A. R. (1990) Promoter analysis of the chalcone synthase (chsA) gene of Petunia hybrida: a 67 bp promoter region directs flower-specific expression. Plant Mol. Biol. 15, 95–109.PubMedCrossRefGoogle Scholar
  75. 75.
    Paul, W., Hodge, R., Smartt, S., Draper, J., and Scott, R. (1992) The isolation and characterisation of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Mol. Biol. 19, 611–622.PubMedCrossRefGoogle Scholar
  76. 76.
    Twell, D., Wing, R., Yamaguchi, J., and McCormick, S. (1989) Isolation and expression of an anther-specific gene from tomato. Mol. Gen. Genet. 217, 240–245.PubMedCrossRefGoogle Scholar
  77. 77.
    Roberts, L. S., Thompson, R. D., and Flavell, R. B. (1989) Tissue-specific expression of a wheat high molecular weight glutenin gene in transgenic tobacco. Plant Cell 1, 56–578.Google Scholar
  78. 78.
    Doyle, J. J., Schuler, M. A., Godette, W. D., Zenger, V., Beachy, R. N., and Slightom, J. L. (1986) The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris Structural homologies of genes and proteins. J. Biol. Chem. 261, 9228–9238.PubMedGoogle Scholar
  79. 79.
    Twell, D., Yamaguchi, J., and McCormick, S. (1990) Pollen-specific gene expression in transgenic plants coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109, 705–713.PubMedGoogle Scholar
  80. 80.
    Twell, D., Yamaguchi, J., Wing, R. A., Ushiba, J., and McCormick, S. (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 5, 496–507.PubMedCrossRefGoogle Scholar
  81. 81.
    Thompson, R. D., Bartels, D., and Harberd, N. P. (1985) Nucleotide sequence of a gene from chromosome ID of wheat encoding a HMW-glutenin subunit. Nucleic Acids Res. 13, 6833–6846.PubMedCrossRefGoogle Scholar
  82. 82.
    Bustos, M. M., Guiltinan, M. J., Jordano, J., Begum, D., Kalkan, F. A., and Hall, T. C. (1989) Regulation of β-glucuronidase expression in transgenic tobacco plants by an A/T-rich, cis-acting sequence found upstream of a french bean β-phaseolin gene. Plant Cell 1, 839–853.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1995

Authors and Affiliations

  • François Guerineau
    • 1
  1. 1.Department of BotanyUniversity of LeicesterUK

Personalised recommendations