Skip to main content

Induction of Heat Shock Proteins and Thermotolerance

  • Protocol
Yeast Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 53))

Abstract

In yeast, as with other organisms, a heat shock causes the induction of the heat shock response. The main consequences of this induction are (at the physiological level) an increased tolerance of high, potentially lethal temperatures, and (at the molecular level) strong induction of a small number of heat shock proteins. The messenger RNAs for the latter proteins are generated by a transcriptional activation of heat-inducible genes. The heat shock response is usually transient, heat shock protein synthesis becoming repressed just a few minutes after an induction by either temperature upshift to stressful temperatures or an upshift followed by a return to normal temperatures (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craig, E. A. (1986) The heat shock response. CRC Crit. Rev. Biochem. 18, 239–280.

    Article  Google Scholar 

  2. Sorger, P. K. (1990) Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62, 793–805.

    Article  PubMed  CAS  Google Scholar 

  3. Kirk, N. and Piper, P. W. (1991) Determinants of heat shock element-directed lacZ expression in Saccharomyces cerevisiae. Yeast 7, 539–546.

    Article  PubMed  CAS  Google Scholar 

  4. Piper, P. W., Curran, B., Davies, M. W., Hirst, K., Lockheart, A., and Seward, K. (1988) Catabolite control of the elevation of PGK mRNA levels by heat shock in Saccharomyces cerevisiae. Mol. Microbiol. 2, 353–362.

    Article  PubMed  CAS  Google Scholar 

  5. Piper, P. W. (1993) Molecular events associated with the acquisition of heat tolerance in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 11, 1–11.

    Article  Google Scholar 

  6. Piper, P. W., Talreja, K., Panaretou, B., Moradas-Ferreira, P., Byrne, K., Praekelt, U. M., Meacock, P., Regnacq, M., and Boucherie, H. (1994) Induction of major heat shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140, 3031–3038.

    Article  PubMed  CAS  Google Scholar 

  7. Parsell, D. A. and Lindquist, S. (1991) The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496.

    Article  Google Scholar 

  8. Sanchez, Y. and Lindquist, S. L. (1990) HSP104 required for induced thermotolerance. Science 248, 1112–1115.

    Article  PubMed  CAS  Google Scholar 

  9. Brake, A. J., Merryweather, J. P., Coit, D. G., Heberlain, V. A., Maziarz, F. R., Mullenbach, G. T., Urdea, M. S., Valenzuela, P., and Barr, P. J. (1984) α-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81, 4642–4646.

    Article  PubMed  CAS  Google Scholar 

  10. Kramer, R. A., DeChiara, T. M., Schaber, M. D. and Hilliker, S. (1984) Regulated expression of a human interferon gene in yeast: Control by phosphate concentration or temperature. Proc. Natl. Acad. Sci. USA 81, 367–370.

    Article  PubMed  CAS  Google Scholar 

  11. Sledewski, A. Z., Bell, A., Kelsay, K., and MacKay, V. L. (1988) Construction of temperature-regulated yeast promoters using the MATα2 repression system. Biotechnology 6, 411–416.

    Article  Google Scholar 

  12. DaSilva, N. A. and Bailey, J. E. (1989) Construction and characterisation of a temperature-sensitive expression system in yeast. Biotechnol. Prog. 5, 18–26.

    Article  CAS  Google Scholar 

  13. Kirk, N. and Piper, P. W. (1991) Methanol as a convenient inducer of heat shock element-directed heterologous gene expression in yeast. Biotechnol. Lett. 13, 465–470.

    Article  CAS  Google Scholar 

  14. Wiemken, A. (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Ant. van Leeuwenhoek J. Microbiol. 58, 209–217.

    Article  CAS  Google Scholar 

  15. Cheng, L., Hirst, K., and Piper, P. W. (1992) Authentic temperature-regulation of a heat shock gene inserted into yeast on a high copy number vector. Influences of overexpression of HSP90 protein on high temperature growth and thermotolerance. Biochem. Biophys. Acta 1132, 26–34.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Piper, P. (1996). Induction of Heat Shock Proteins and Thermotolerance. In: Evans, I.H. (eds) Yeast Protocols. Methods in Molecular Biology™, vol 53. Humana Press. https://doi.org/10.1385/0-89603-319-8:313

Download citation

  • DOI: https://doi.org/10.1385/0-89603-319-8:313

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-319-1

  • Online ISBN: 978-1-59259-540-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics