Skip to main content

Voltammetric and Amperometric Probes for Single-Cell Analysis

  • Protocol

Part of the book series: Neuromethods ((NM,volume 27))

Abstract

Chemical analysis of single cells is an area of great interest in the biological and medical sciences. Knowledge of the chemical composition and dynamics of single nerve cells should lead to better models of the cellular neurotransmission process. Information of this type promises to advance our knowledge of neurotransmitter storage, exocytosis, and the physiological effects of external stimuli, such as drugs and toxins. Advances in these areas require the development of analytical methods capable of monitoring neurotransmitter dynamics at the single-cell and subcellular levels.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Abe T., Lau Y Y., and Ewing A. G. (1991) Intracellular analysis with an immobilized-enzyme glucose electrode having a 2-μm diameter and subsecond response time. J. Am. Chem. Soc. 113, 7421–7423.

    Article  CAS  Google Scholar 

  • Abe T., Lau Y Y., and Ewing A. G. (1992) Characterization of glucose microsensors for intracellular measurements. Anal. Chem. 64, 2160–2163.

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie E. D., Keller R. M., and Zigmond M. J. (1988) Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience 27, 897–904.

    Article  PubMed  CAS  Google Scholar 

  • Amman D. (1986) Ion Selective Microelectrodes. Springer-Verlag, Berlin.

    Google Scholar 

  • Betzig E., Trautman J. K., Harris T. D., Weiner J S., and Kostelak R. L. (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251, 1468–1470.

    Article  PubMed  CAS  Google Scholar 

  • Brownstein M. J., Saavedra J. M., Axelrod J., Zeman C H., and Carpenter D. O. (1974) Coexistence of several putative neurotransmitters in single identified neurons of Aplysia. Proc. Natl. Acad. Set. USA 71, 4662–4665.

    Article  CAS  Google Scholar 

  • Chen G., Luo G. and Ewing A. G. (1994) Exocytosis of neuromessengers from nerve cell bodies revealed by electrochemical monitoring of single secretory events, submitted to Nature.

    Google Scholar 

  • Chen T.-K., Luo G., and Ewing A. G. (1994) Amperometric monitoring of stimulated catecholamine quantal release from rat pheochromocytoma (PC12) cells at the zeptomole level. Anal. Chem. 66, 3031–3035.

    Article  PubMed  CAS  Google Scholar 

  • Chen T. K., Lau Y. Y., Wong D K Y., and Ewing A. G. (1992) Pulse voltammetry in single cells using platinum microelectrodes. Anal. Chem. 64, 1264–1268.

    Article  CAS  Google Scholar 

  • Chien J. B., Saraceno R A., and Ewing A. G. (1988) Intracellular voltammetry with ultrasmall carbon-ring electrodes, in Redox Chemistry and Interfactal Behavior of Biological Molecules (Dryhurst G. and Niki K., eds.), Plenum, New York, pp. 417–424.

    Google Scholar 

  • Chien J. B., Wallingford R A., and Ewing A. G. (1990) Estimation of free dopamine in the cytoplasm of the giant dopamine cell of Planorbis corneus by voltammetry and capillary electrophoresis. J. Neurochem. 54, 633–638.

    Article  PubMed  CAS  Google Scholar 

  • Chow R. H., von Rüden L., and Neher E. (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60–63.

    Article  PubMed  CAS  Google Scholar 

  • Ciolkowski E. L., Cooper B. R., Jankowski J. A., Jorgenson J. W., and Wightman R M. (1992) Direct observation of epinephrine and norepinephrine cosecretion from individual adrenal medullary chromaffin cells. J. Am. Chem. Soc. 114, 2815–2821.

    Article  CAS  Google Scholar 

  • Chft-O’Grady L., Linstedt A. D., Lowe A. W., Grote E., and Kelly R. B. (1990) Biogenesis of synaptic vesicle-like structures in a pheochromocytoma cell line. J. Cell. Biol. 110, 1693–1703.

    Article  Google Scholar 

  • Cooper B. R., Jankowski J. A., Leszczyszyn D. J., Wightman R. M., and Jorgenson J W. (1992) Quantitative determination of catecholamines in mdividual bovine adrenomedullary cells by reverse-phase microcolumn liquid chromatography with electrochemical detection. Anal. Chem. 64, 691–694.

    Article  PubMed  CAS  Google Scholar 

  • Dennis T., L’Heureux R., Carter C, and Scatton B. (1987) Presynaptic α2-adrenoreceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by in vivo dialysis) in the rat. J. Pharmacol Exp. Ther. 241, 642–649.

    PubMed  CAS  Google Scholar 

  • Dunn L A. and Holz R. W. (1983) Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells. J. Biol. Chem. 258, 4989–4993.

    PubMed  CAS  Google Scholar 

  • Edwards F. A., Konnerth A., and Sakmann B. (1990) Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slice: a patch-clamp study. J. Physiol. 430, 213–249.

    PubMed  CAS  Google Scholar 

  • Ewing A. G., Strein T G., and Lau Y. Y. (1992) Analytical chemistry in microenvironments: single nerve cells. Accts. Chem. Res. 25, 440–447.

    Article  CAS  Google Scholar 

  • Fischer J F. and Cho A. K. (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J. Pharm. Exp. Ther. 208, 203–209.

    CAS  Google Scholar 

  • Giacobini E. (1968) Chemical studies on individual neurons (I) vertebrate nerves. Neurosci. Res. 1, 1–71.

    CAS  Google Scholar 

  • Giacobini E. (1987) Neurochemical analysis of single neurons. J Neurosci. Res. 18, 632–637.

    Article  PubMed  CAS  Google Scholar 

  • Green L A. and Tischler A. S. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73, 2424–2428.

    Article  Google Scholar 

  • Hawley M. D., Tatawawadi S. V., Piekarski S., and Adams R. N. (1967) Electrochemical studies of the oxidation pathway of catecholamines. J. Am. Chem. Soc. 89, 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez L., Lee F., and Hoebel B. G. (1987) Simultaneous microdialysis and amphetamine infusion in the nucleus accumbens and striatum of freely moving rats: increase in extracellular dopamine and serotonin. Brain Res. Bull. 19, 623–628.

    Article  PubMed  CAS  Google Scholar 

  • Hogan B L. and Yeung E. S. (1992) Determination of intracellular species at the level of a single erythrocyte via capillary electrophoresis with direct and indirect fluorescence detection. Anal. Chem. 64, 2841–2845.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa E., Hashida S., Kohno T., and Hirota K. (1990) Ultrasensitive enzyme immunoassay. Clin. Chim. Acta 194, 51–72.

    Article  PubMed  CAS  Google Scholar 

  • Jackisch R., Huang H. Y., Rensing H., Lauth D., Allgaier C, and Hertting G. (1992) α2-adrenoceptor mediated inhibition of exocytotic noradrenaline release in the absence of extracellular calcium. Eur. J. Pharm. Mol. Pharmacol. Sect. 8(3), 245–252.

    Article  Google Scholar 

  • Jankowski J. A., Schroeder T. J., Ciolkowski E L., and Wightman R. M. (1993) Temporal characteristics of quantal secretion of catecholamines from adrenal medullary cells. J. Biol. Chem. 268, 14,694–14,700.

    PubMed  CAS  Google Scholar 

  • Jankowski J. A., Schroeder T. J., Holz R W., and Wightman R. M. (1992) Quantal secretion of catecholamines measured from individual bovine adrenal medullary cells permeabilized with digitonin. J. Biol. Chem. 267, 18,329–18,335.

    PubMed  CAS  Google Scholar 

  • Kennedy R. T., Oates M. D., Cooper B. R., Nickerson B., and Jorgenson J. W. (1989) Microcolumn separations and the analysis of single cells. Science 246, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Kim Y.-T., Scarnulis D M., and Ewing A. G. (1986) Carbon-ring electrodes with 1-μm tip diameter. Anal. Chem. 58, 1782–1786.

    Article  CAS  Google Scholar 

  • Kuczenski R. (1983) Biochemical actions of amphetamine and other stimulants, in Stimulants: Neurochemical, Behavioral, and Clinical Perspectives (Creese L, ed.), Raven, New York, pp. 31–61.

    Google Scholar 

  • Lau Y. Y., Abe T., and Ewing A. G. (1992) Voltammetric measurement of oxygen in single neurons using platinized carbon-ring electrodes. Anal. Chem. 64, 1702–1705.

    Article  PubMed  CAS  Google Scholar 

  • Lau Y. Y., Chien J. B., Wong D K Y., and Ewing A. G. (1991) Characterization of the voltammetric response at intracellular carbon-ring electrodes. Electroanalysis 3, 87–95.

    Article  CAS  Google Scholar 

  • Leszczyszyn D. J., Jankowski J. A., Viveros O. H., Diliberto E. J. Jr., Near J A., and Wightman R. M. (1990) Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells. J. Biol. Chem. 265, 14,736–14,737.

    PubMed  CAS  Google Scholar 

  • Leszczyszyn D. J., Jankowski J. A., Viveros O. H., Diliberto E. J. Jr., Near J A., and Wightman R. M. (1991) Secretion of catecholamines from individual adrenal medullary chromaffin cells. J. Neurochem. 56, 1855–1863.

    Article  PubMed  CAS  Google Scholar 

  • Lhnas R., Steinberg I Z., and Walton K. (1981) Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys. J. 33, 323–352.

    Article  Google Scholar 

  • Mantus D. S., Valaskovic G.A., and Morrison G. H. (1991) High mass resolution secondary ion mass spectrometry via simultaneous detection with a charge coupled device. Anal. Chem. 63, 788–792.

    Article  CAS  Google Scholar 

  • Matioli G. T. and Niewisch H. B. (1965) Electrophoresis of hemoglobin in single erythrocytes. Science 150, 1824–1826.

    Article  PubMed  CAS  Google Scholar 

  • McCaman M. W., Weinreich D., and McCaman R. E. (1973) The determination of picomole levels of 5-hydroxytryptamine and dopamine in Aplysia, tritonia and leech nervous tissues. Brain Res. 53, 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Meulemans A., Poulain B., Baux G., and Tauc L. (1987) Changes in serotonin concentration in a living neurone: a study by on-line intracellular voltammetry. Brain Res. 414, 158–162.

    Article  PubMed  CAS  Google Scholar 

  • Meulemans A., Poulain B., Baux G., Tauc L., and Henzel D. (1986) Micro carbon electrodes for intracellular voltammetry. Anal. Chem. 58, 2088–2091.

    Article  CAS  Google Scholar 

  • Nicholson C. and Rice M. E. (1988) Use of ion-selective microelectrodes and voltammetric microsensors to study brain cell microenvironment, in Neuromethods: Neuronal Microenvironment (Boulton A. A., Baker G. B., and Walz W., eds.), Humana, Clifton, NJ, pp. 247–361.

    Chapter  Google Scholar 

  • O’Connor D. T. and Frigon R. P. (1984) Chromogranin A, the major catecholamine storage vesicle soluble protein. J. Biol. Chem. 259, 3237–3247.

    CAS  Google Scholar 

  • Osborne N. N., Priggemeier E., and Neuhoff V. (1975) Dopamine metabolism in characterized neurones of Planorbis corneus. Brain Res. 90, 261–271.

    Article  PubMed  CAS  Google Scholar 

  • Parsons D. W., Maat A. T., and Pinsker H. M. (1983) Selective recording and stimulation of individual identified neurons in freely behaving Aplysia. Science 221, 1203–1206.

    Article  PubMed  CAS  Google Scholar 

  • Pelayo F., Dubocovich M. L., and Langer S. Z. (1980) Inhibition of neuronal uptake reduces the presynaptic effects of clonidine but not of α2-methylnoradrenaline on the stimulation-evoked release of 3H-nora-drenaline from rat occipital cortex slices. Eur. J. Pharmacol. 64, 143–155.

    Article  PubMed  CAS  Google Scholar 

  • Powell B. and Cottrell G. A. (1974) Dopamine in an identified neuron of Planorbis corneus. J. Neurochem. 22, 605,606.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder T. J., Jankowski J. A., Kawagoe K. T., Wightman R. M., Lefrou C, and Amatore C. (1992) Analysis of diffusional broadening of vesicular packets of catecholamines released from biological cells during exocytosis. Anal. Chem. 64, 3077–3083.

    Article  PubMed  CAS  Google Scholar 

  • Schubert D., LaCorbiere M., Klier F. G., and Steinbach J. H. (1980) The modulation of neurotransmitter synthesis by steroid hormones and insulin. Brain Res. 190, 67–79.

    Article  PubMed  CAS  Google Scholar 

  • Sharp T., Zetterstrom T., Ljungbers T., and Ungerstedt U. (1987) A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis. Brain Res. 401, 322–330.

    Article  PubMed  CAS  Google Scholar 

  • Sossin W. S. and Scheller R. H. (1989) A bag cell neuron-specific antigen localizes to a subset of dense core vesicles in Aplysia califarnica. Brain Res. 494, 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Starke K. (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev. Physiol. Biochem. Pharmacol. 77, 1–124.

    Article  PubMed  CAS  Google Scholar 

  • Starke K. (1981) Presynaptic receptors. Annu. Rev. Pharmacol. Toxicol. 21, 7–30.

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D. and Rayport S. (1990) Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron 5, 797–808.

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D., Maidment N. T., and Rayport S. (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J. Neurochem. 60, 527–535.

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D., Chen T.-K., Lau Y. Y., St. Remy C, Kristensen H., Ewing A. G., and Rayport S. (1994) Amphetamine redistributes DA from synaptic vesicles to the cytosol and promotes reverse transport, submitted to J. Neurosci.

    Google Scholar 

  • Tank D. W., Sugimon M., Connor J. A., and Llinas R. R. (1988) Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242, 773–776.

    Article  PubMed  CAS  Google Scholar 

  • Thomas L., Hartung K., Langosch D., Rehm H., Bamberg E., Franke W. W., and Betz H. (1988) Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 242, 1050–1053.

    Article  PubMed  CAS  Google Scholar 

  • Thomas R. C. and Moody W. J. (1980) Ion-sensitive microelectrodes for intracellular use. Trends Biochem. Sci. 5, 86,87.

    Article  CAS  Google Scholar 

  • Trifarro J. M. and Lee R. W. H. (1980) Morphological characteristics and stimulus-secretion coupling in bovine adrenal chromaffin cell cultures. Neuroscience 5, 1533–1546.

    Article  Google Scholar 

  • Wagner J. A. (1985) Structure of catecholamrne secretory vesicles from PC12 cells. J. Neurochem. 45, 1244–1253.

    Article  PubMed  CAS  Google Scholar 

  • Westfall T. C. (1977) Local regulation of adrenergic neurotransmission. Physiol. Rev. 57, 659–728.

    PubMed  CAS  Google Scholar 

  • Wightman R. M. (1981) Microvoltammetric electrodes. Anal. Chem. 53, 1125A–1134A.

    Article  CAS  Google Scholar 

  • Wightman R. M. (1988) Voltammetry with microscopic electrodes in new domains. Science 240, 415–420.

    Article  PubMed  CAS  Google Scholar 

  • Wightman R. M. and Wipf D. O. (1988) Voltammetry at ultramicroelectrodes, in Electroanalytical Chemistry (Bard A. J., ed.), Marcel Dekker, New York, pp. 267–353.

    Google Scholar 

  • Wightman R. M., Jankowski J. A., Kennedy R. T., Kawagoe K. T., Schroeder T. J., Leszczyszyn D. J., Near J. A., Diliberto E. J. Jr., and Viveros O. H. (1991) Temporally resolved catecholamine spikes correspond to single vesicles release from individual chromaffin cells. Proc. Natl. Acad. Sci. USA 88, 10,754–10,758.

    Article  PubMed  CAS  Google Scholar 

  • Winkler H. and Westhead E. (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5, 1803–1823.

    Article  PubMed  CAS  Google Scholar 

  • Wise R. A. and Bozarth M. A. (1987) Brain mechanisms of drug reward and euphoria. Psych. Med. 3, 445–460.

    Google Scholar 

  • Yoo S. H. and Lewis M. S. (1992) Effects of pH and Ca2+ on monomerdimer and monomer-tetramer equilibria of chromogranin A. J. Biol Chem. 267, 11,236–11,241.

    PubMed  CAS  Google Scholar 

  • Zaczek R., Culp S., and DeSouza E. B. (1991) Interactions of [3H]-amphetamine with rat brain synaptosomes. II. Active transport. J. Pharmacol. Exp. Ther. 257, 830–835.

    PubMed  CAS  Google Scholar 

  • Zetterstrom T., Sharp T., Marsden C. A., and Ungerstedt U. (1983) In vivo measurement of dopamine and its metabolites by mtracerebral dialysis: changes after D-amphetamine. J. Neurochem. 41, 1769–1773.

    Article  PubMed  CAS  Google Scholar 

  • Zhou R., Luo G., and Ewing A. G. (1994) Direct observation of the effect of autoreceptors on stimulated release of catecholamines from adrenal cells. J. Neurosci. 14, 2402–2407.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press, Inc.

About this protocol

Cite this protocol

Ewing, A.G., Chen, TK., Chen, G. (1995). Voltammetric and Amperometric Probes for Single-Cell Analysis. In: Boulton, A.A., Baker, G.B., Adams, R.N. (eds) Voltammetric Methods in Brain Systems. Neuromethods, vol 27. Humana Press. https://doi.org/10.1385/0-89603-312-0:269

Download citation

  • DOI: https://doi.org/10.1385/0-89603-312-0:269

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-312-2

  • Online ISBN: 978-1-59259-632-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics